

Chapter #9 FRAMING DESIGN Fruitland Vertical Farm and Marketplace

January 20, 2020

Team 12 Chapter Lead(s): Kevin Luong, David Moore

PROJECT OVERVIEW

The City of Hamilton has retained GreenTech Engineering (GreenTech) to complete the design and consultation for the Fruitland Vertical Farm and Marketplace located at the intersection of North Service Road and Fruitland Road in Stoney Creek, Ontario. The City of Hamilton's 2031 Master Plan (2015) identifies the need for sustainable infrastructure, with the goal of implementing innovative solutions for the problems threatening today's society. To fulfill this need, the City has chosen to implement a vertical farm in a community slated for urban development in the coming years.

The objective of the Fruitland Vertical Farm and Marketplace is to provide an alternate means of food production in a population-dense environment. The proposed undertaking will seek to act as a "sustainable landmark" within the City of Hamilton by implementing sustainable structural, stormwater, transportation, and geotechnical practices throughout its design and construction.

TABLE OF CONTENTS

9.1 Design Approach	2 -
9.2 Joist Design	2 -
9.2.1 Joist Design Overview	
9.2.2 Joist Design for Floor (Market Place)	
9.2.3 Joist Design for Floor (Main Building)	
9.2.4 Joist Design for Roof 1	3 -
9.2.5 Joist Design for Roof 2	
9.2.6 Joist Design for Roof 3	4 -
9.3 Girder Design	5 -
9.3.1 Girder Design Process	
9.3.2 Girder Design for Floor (Market Place)	5 -
9.3.3 Girder Design for Floor (Main Building)	5 -
9.3.4 Girder Design for Roof 1	
9.3.5 Girder Design for Roof 2	6 -
9.3.6 Girder Design for Roof 3	6 -
9.4 Column Design	7 -
9.4.1 Column Design Process	7 -
9.4.2 Identified Possible Governing Columns	8 -
9.4.3 Final Column Design	9 -
9.5 Chevron Brace Design	10 -
9.5.1 Brace Design Process	10 -
9.5.2 Final Brace Design	11 -
9.6 Floor Slab and steel deck Design	11 -
References	13 -
Appendix B	14 -

9.1 DESIGN APPROACH

Greentech Engineering recognizes the importance of enhancing the triple bottom line of our stakeholders being people, planet, profit and these concepts are reflected in our design approach. People are at the core of Greentech Engineering as we focus on safety, ease of construction and familiar structural design to decrease the chances of errors. All member loads are calculated conservatively to ensure the safety and proper serviceability of the occupants and workers. Sustainability is at the core of Greentech Engineering services and it is also at the core of the project, Fruitland Vertical Farm and Marketplace and this too was an important factor in the overall design. Although it is important to be conservative and have built-in redundancy into our structural system, our engineers also recognize that the more material used, the more embodied carbon will be part of the project. It is our aim to design the structure efficiently – for instance our decision to share the same columns between the market and farm reflect our aim to decrease the material used in the structural system. With an aim to decrease material naturally follows savings which increase profit and increasing the overall value of the project for developers. All steel sections used for structural framing members are ASTM Grade A992.

9.2 JOIST DESIGN

9.2.1 Joist Design Overview

Joist is known as secondary structural member, which supports composite slab or steel deck. It carries vertical loads, such as dead load, live load, snow load, etc. and transfers them to girder. As a result, joist is subjected to shear and bending moment. It is necessary to perform adequate checks to ensure the member can resist critical load combination listed in NBCC 2015. A sustainable design requires the balance between engineering knowledge, total project cost, and construction efficiency. Thus, the building is divided into five sub-areas and design joist according to critical loading case at each area.

9.2.2 Joist Design for Floor (Market Place)

According to Chapter 6, market place subjects a uniform 4.06 kPa dead load and 4.8 kPa live load. The critical factored load combination is identified to be case 2 in NBCC Table 4.1.3.2-A

$$1.25DL + 1.5LL$$
 (1)

Since the floor slab is sitting on joist members, it prevents lateral movement of the top flange along the joist. In addition, the loads are acting in gravity direction. Therefore, it is assumed that joists are laterally supported along compression flange, which also means there is no lateral torsional buckling. Critical loading case is chosen with largest tributary area, which lies between grid D1 and E1 and grid 3 and 4. Then, maximum factored bending moment and shear are

calculated based on factored loading combination. Next, maximum bending moment is substitute into equation 2 to obtain initial z_x value for first design iteration section.

$$\phi z_x F_y \ge M_f \tag{2}$$

Last, adequate checks are performed for moment, shear and deflection according to CSA S16-14.

For detailed calculation, refer to Appendix B

9.2.3 Joist Design for Floor (Main Building)

Similar to market place, main building subjects a uniform 4.06 kPa dead load and 4.8 kPa live load. The critical factored load combination is also identified to be case 2 in NBCC Table 4.1.3.2-A. Joist member in main building are assumed laterally supported along compression flange. Critical loading case is chosen with largest tributary area, which lies between grid I and J and grid 8 and 9. Maximum factored bending moment and shear are calculated based on factored loading combination. Initial design section is chosen based on according bending moment value. Adequate checks are required for moment, shear and deflection according to CSA S16-14.

For detailed calculation, also refer to Appendix B

9.2.4 Joist Design for Roof 1 (Curved Roof of Main Building)

Critical load case for roof in gravity direction is identified to be case 3 in NBCC 2015

$$1.25DL + 1.5SL + 1.0LL$$
 (3)

However, when designing joist for roof level, it is necessary to consider uplift caused by wind suction. The critical uplift load combination is identified to be case 4 in NBCC 2015

$$0.9DL + 1.4WL$$
 (4)

Largest tributary area for a joist on roof 1 lies between grid C and D and grid 8 and 9. Maximum bending moment and shear are calculated in two cases, namely gravity direction load case and uplift load case. It is noticed that joist members are only laterally braced on top flange, thus, in uplift case, it is possible for lateral torsional buckling occurs. Hence, LTB check is required along with moment, shear and deflection checks as per CSA S16-14. The roof is assumed to be flatted due to small increase in angle (about 3.3°).

For detailed calculation, refer to Appendix B

9.2.5 Joist Design for Roof 2 (Flat Roof of Main Building)

The procedure of joist design is similar to roof 1, except the value of snow load. Since roof 2 is next to and lower than roof 1. Snow drift between two roofs occurs. As a result, snow load on a portion of roof 2 is significant larger. In order to account for snow drift in a conservative approach, joist members are design for maximum snow load of 5.48 kPa.

For detailed calculation, refer to Appendix B

9.2.6 Joist Design for Roof 3 (Roof of Market Place)

Similar to roof 2, snow drift happens as a result of slope roof portion located in the middle of roof 3. To be more conservative in calculation, snow load is also taken as 5.48 kPa for roof 3. All other design procedures are same as roof 1.

For detailed calculation, refer to Appendix B

Table 1 and 2 show the factored and resistant moment, shear, deflection of chosen section for joist design.

	C	ritical Ca	se		Moment		Shear			
Level	Load type	Span (mm)	Tributary Area (m2)	M _f (kNm)	M _r (kNm)	M _f /M _r	V _f (kN)	V _r (kN)	V _f /V _r	
Market Floor	Gravity	7000	13.1	141	249	0.57	81	542	0.18	
Main Building Floor	Gravity	7250	15.4	172	219	0.79	95	423	0.22	
Roof 1	Gravity Uplift	7250 7250	14.6 13.5	58 17	104 38	0.56 0.45	32 10	275 275	0.12 0.04	
Roof 2	Gravity Uplift	7250 7250	15.4 15.4	149 10	205 45	0.73 0.22	82 6	470 470	0.17 0.01	
Roof 3	Gravity Uplift	7000 7000	13.1 13.1	123 16	205 49	0.6 0.33	70 9	470 470	0.15 0.02	

Table 1: Moment and Shear Summary for Joist Design

		Critical Case	2	Defle	ection	
Level	Load type	Span (mm)	Tributary Area (m2)	Δ _{max} (mm)	Δ _{limit} (mm)	Section
Market Floor	Gravity	7000	13.1	18.3	19.4	W200x71
Main Building Floor	Gravity	7250	15.4	18.5	20.1	W310x45
Roof 1	Gravity Uplift	7250 7250	14.6 13.5	- 13.3	20.1	W200x31
Roof 2	Gravity Uplift	7250	15.4 15.4	- 18.4	20.1	W360x39
Roof 3	Gravity Uplift	7000 7000	13.1 13.1	14 -	19.4 -	W360x39

Table 2: Deflection and Section Summary for Joist Design

9.3 GIRDER DESIGN

9.3.1 Girder Design Process

Girder is an important primary structural member, which carries loads from joists and directly transfers them to columns. Therefore, under-designing girder would cause significant risk to the structure. It is necessary to perform all adequate checks stated in CSA S16-14 with respect to critical loading cases listed in NBCC 2015. Sustainable design is also applied in designing girder.

9.3.2 Girder Design for Floor (Market Place)

Since the girder carries loads from joist connected from both sides, it is assumed girder is laterally supported at joist locations. In this case, lateral torsional buckling may occur within unbraced length. Thus, critical loading case is chosen by comparing tributary area and load combinations. Then, factored moment and shear are calculated in order to compare with resistant capacity of the girder section. Adequate checks are required for moment, shear and deflection according to CSA S16-14.

For detailed calculation, refer to Appendix B

9.3.3 Girder Design for Floor (Main Building)

Similar to market place, in order to design girder main building, it needs to follow the logic of choosing critical loading case and complete necessary checks to ensure safety of the structure.

For detailed calculation, refer to Appendix B

9.3.4 Girder Design for Roof 1 (Curved Roof of Main Building)

For roof girder design, maximum wind load (happens within zone 2E) is taken to calculate the critical loading case. Next, initial member section is selected based on factored moment and shear. Last, perform all checks to ensure section is safe. Again, the roof is assumed to be flatted due to small increase in angle (about 3.3°). For safety concern, the largest uplift pressure is used in calculation.

For detailed calculation, refer to Appendix B.

9.3.5 Girder Design for Roof 2 (Flat Roof of Main Building)

The procedure is similar to roof 1, however, the snow load in this case accounts for snow drift caused by the difference in elevation between two roofs. For safety concern, the largest uplift pressure and snow load are used in calculation.

For detailed calculation, refer to Appendix B.

9.3.6 Girder Design for Roof 3 (Roof of Market Place)

The procedure is similar to roof 1, however, the snow load in this case accounts for snow drift caused by the slope roof in the middle of the roof. For safety concern, the largest uplift pressure and snow load are used in calculation.

For detailed calculation, refer to Appendix B.

Table 3 and 4 show the factored and resistant moment, shear, deflection of chosen section for girder design.

	(Critical Ca	se		Moment		Shear		
Level	Load type	Span (mm)	Unbraced length (mm)	M _f (kNm)	M _r (kNm)	M _f /M _r	V _f (kN)	V _r (kN)	V _f /V _r
Market Floor	Gravity	7500	1875	608	624	0.97	243	996	0.24
Main Building Floor	Gravity	8500	2125	663	732	0.91	234	1114	0.21
Roof 1	Gravity Uplift	8050 8050	2012.5 8050	258 27	277 90	0.93 0.3	96 10	523 523	0.18 0.02
Roof 2	Gravity Uplift	8500 8500	2125 8500	697 30	732 262	0.95 0.11	246 11	1114 1114	0.22 0.01
Roof 3	Gravity Uplift	7500 7500	1875 7500	525 23	534 251	0.98 0.09	210 9	931 931	0.23 0.01

Table 3: Moment and Shear	Summary for Girder Desian
Tuble 5. Wollient and Shear	Summary jor Smacr Design

		Critical Case	9	Defle	ection		
Level	Load type	Span Tributary (mm) Area (m2)		Δ _{max} (mm) Δ _{limit} (mm)		Section	
Market Floor	Gravity	7500	1875	8.57	20.8	W460x89	
Main Building Floor	Gravity	8500	2125	20.4	23.6	W530x92	
Roof 1	Gravity Uplift	8050 8050	2012.5 8050	- 15.4	- 22.4	W360x51	
Roof 2	Gravity Uplift	8500 8500	2125 8500	20.9	23.6	W530x92	
Roof 3	Gravity Uplift	7500 7500	1875 7500	20.5	20.8	W410x81	

Table 4: Deflection and Section Summary for Girder Design

9.4 COLUMN DESIGN

9.4.1 Column Design Process

Most columns carry a different load and subsequently, a bespoke design can be done per each column; however, having a different structural section for each column would not be conducive of achieving a good design that reflects value for our clients. The greatest difference between loads on columns are from the exterior columns and interior columns as the tributary width for

the exterior columns are roughly half of that of an interior column. Exterior columns also carry the weight of the triple glazing curtain wall as well which increases its load significantly as well. With this in mind, Greentech Engineering has decided to use a different section for exterior and interior columns for each level and in each building. Having 4 storeys for the main farm building and 2 storeys for the marketplace, a total of 12 columns need to be designed. With less variance amongst the columns, more uniformity is introduced to the construction and thus less error as well. To design these 12 columns, it is important to first create a short list of columns that could govern the design and then design for the governing column.

During the design process and looking at the design of the building holistically, it was realized that certain columns needed to be upsized in order to accommodate for the connections. The columns didn't need to be overdesigned too much as they were situated as to have the smaller joists connect to the webs as opposed to the much larger girders. Small C_f/C_r values are due to the upsizing of columns to accommodate joist flanges fitting into the column's web.

9.4.2 Identified Possible Governing Columns

With various load considerations and column lengths, there are various columns on each level that could govern the design. Table 5 below provides a summary of columns that may govern the design in their respective category (level and exterior/interior) and the reason why they may govern.

LEVEL	INT/EXT	POSSIBLE GOVERNING COLUMN	REASONS IT MAY GOVERN
		J8	 Largest tributary area on level KL=4m
	INT	18	 Possibly most heavily loaded due to accumulated snow load KL=4m
4		D6	- Large tributary area - KL=6m - overall lower loading than J8 or I8 though
	EXT	14	KL=4m - No line load from curtain wall as it is supported below - supports drift snow load as well
		D4	- largest TA for column with KL=6m
	INT	J8	 Big load from roof now translated to this column Again biggest TA
3		18	- Smaller TA than J8 but large load from roof can still make this governing
	EXT	14	 Large tributary area which is enhanced by the snow drift load

		J4	 Largest tributary area on exterior although not receiving more snow drift load than I4 	
		81	- It was found that this column governed on the 3rd level and thus will govern again on this level	
2	INT	G4	 Checking the load here due to it being a column shared between both buildings and there is a slight change in tributary area reduction factor as well due to the roof live load Snow drift load has also accumulated and now contributes to the load here 	
		F2-3	- Interior market column which has the larges tributary area	
	EXT	J4	 Largest tributary area on exterior for main building. It has governed on the 3rd level and thus will govern again here 	
		F2-1	- Largest tributary area on exterior for market	
		81	 It was found that this column governed on the 2nd level and thus will most likely govern again on this level 	
4	INT	G4	- The change in live load reduction factor due to it being an assembly occupancy may make this column govern	
1		F2-3	- Interior market column which has the largest tributary area	
	EXT	J4	- Largest tributary area on exterior for main building. It has governed on the 2nd level and thus will govern again here	
		F2-1	- Largest tributary area on exterior for market	

Table 5: Columns That May Govern with Reasoning

9.4.3 Final Column Design

The loads on the columns that may govern were found and the resultant factored load was calculated as documented in Appendix B. The detailed calculations can be followed in Appendix B, but a summary of the results and the chosen section can be seen in Table 6 below where C_s , C_d , C_l is the snow load, dead load and live load placed on the column.

Level	Col Tag	Int/Ext	C _s (kN)	C _d (kN)	C _l (kN)	C _f (kN)	C _r (kN)	Chosen Section	C _f /C _r
	J8	Int	123	69.2	61.7	333	-	-	-
	18	Int	161.2	65	58	381.1	735	W200X42	0.52
4	D6	Int	64.9	56.8	50.8	219.2	395	W200X42	0.56
	14	Ext	80	32	28.6	123.5	395	W200X42	0.32
	D4	Ext	34.7	30.4	27.1	117.2	-	-	-
	J8	Int	123	319.7	269	926.1	1210	W200X52	0.77
	18	Int	161.2	300.1	258.1	923.5	-	-	-
3	D4	Ext	34.7	195	145.5	496.7	-	-	-
	14	Ext	80	205.5	150.7	563	-	-	-
	J4	Ext	61	218.8	157.4	570.6	735	W200X42	0.78
	J8	Int	123	570.3	411.2	1452.7	1680	W200X71	0.87
	G4	Int	106.5	358.8	231.6	902.4		-	-
2	F2-3	Int	117.6	58.8	52.5	302.4	735	W200X42	0.42
	J4	Ext	61	383.1	237.7	896.5	1210	W200X52	0.75
	F2-1	Ext	33.6	29.4	26.25	113.5	735	W200X42	0.16
	J8	Int	123	820.9	532.6	1948	2060	W200X86	0.95
	G4	Int	106.5	551	397	1391		-	-
1	F2-3	Int	117.6	272	304.5	914.4	1210	W200X52	0.76
	J4	Ext	61	383.1	306.2	1205	1210	W200X52	0.99
	F2-1	Ext	33.6	136	153	433.1	735	W200X42	0.60

Table 6: Column Design Summary

These results can be seen visually within the attached structural plans and also the column schedule.

9.5 CHEVRON BRACE DESIGN

9.5.1 Brace Design Process

There were various factors that influenced the design process of the braces. The first decision was what type of bracing we would use, and chevron and X bracing was considered. Chevron bracing was ultimately chosen due to its high elastic stiffness and strength (Razak, Kong, Zainol, Adnan, & Azimi, 2017) and that it would save more material overall. Placement of bracing was pushed more towards the corners of the building for increased moment resistance. It is important to note as well the number of braces that were used on the north and south face versus the amount used on the east and west face. A symmetric placement of the braces was also decided upon for ease of calculation but also so that the building would look better architecturally. It was also decided that the most heavily loaded brace per level would govern the design for all other braces on that level. Planning ahead for the connection design of each section, an area 1.4 times

the required area through a gross area section calculation was found to accommodate for possible net section fracture that may occur during high tension.

9.5.2 Final Brace Design

In order to see detailed calculations concerning load analysis for the governing member, additional comments on the design and the final design for the member please refer to Appendix B. A summary of the design of the braces can be seen below in Table 7 and Table 8 which correspond to braces running east to west, and north to south respectively.

Level	Braces running E-W: T _f (kN)	T _r (kN)	T _f /T _r	Chosen Section	Ag
Roof	133.5	481.3	0.28	C150x12	1550
4	296.3	481.3	0.62	C150x12	1550
3	462.4	720.4	0.64	C180x18	2320
2	639.8	1102.3	0.58	C200x28	3550

Level	Braces running N-S: T _f (kN)	T _r (kN)	T _f /T _r	Chosen Section	Ag
Roof	176.7	481.3	0.37	C150x12	1550
4	373.1	574.4	0.65	C180x15	1850
3	532.9	810.4	0.66	C200x21	2610
2	700.8	1102.3	0.64	C200x28	3550

 Table 7: Design Summary for Braces Running East to West

Table 8: Design Summary for Braces Running North to South

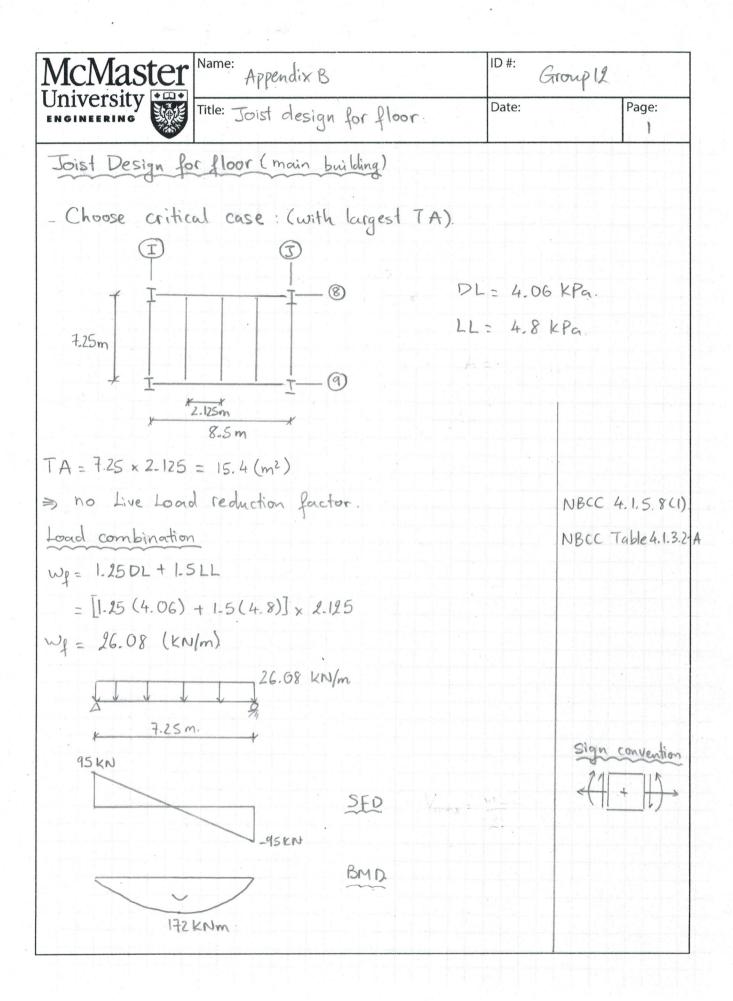
9.6 FLOOR SLAB AND STEEL DECK DESIGN

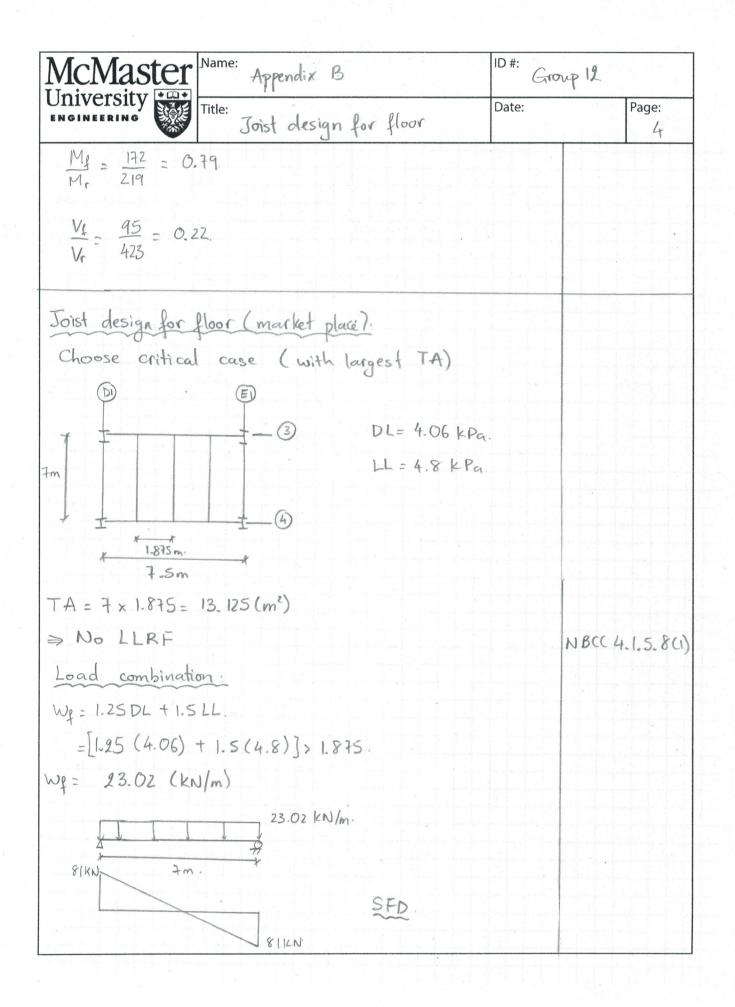
Floor slab and steel deck design in this project is based on CANAM steel deck design catalogue. Table 9 shows the summary of selected sections for floor slab and steel deck (CANAM, n.d.).

For detailed calculation, refer to Appendix B.

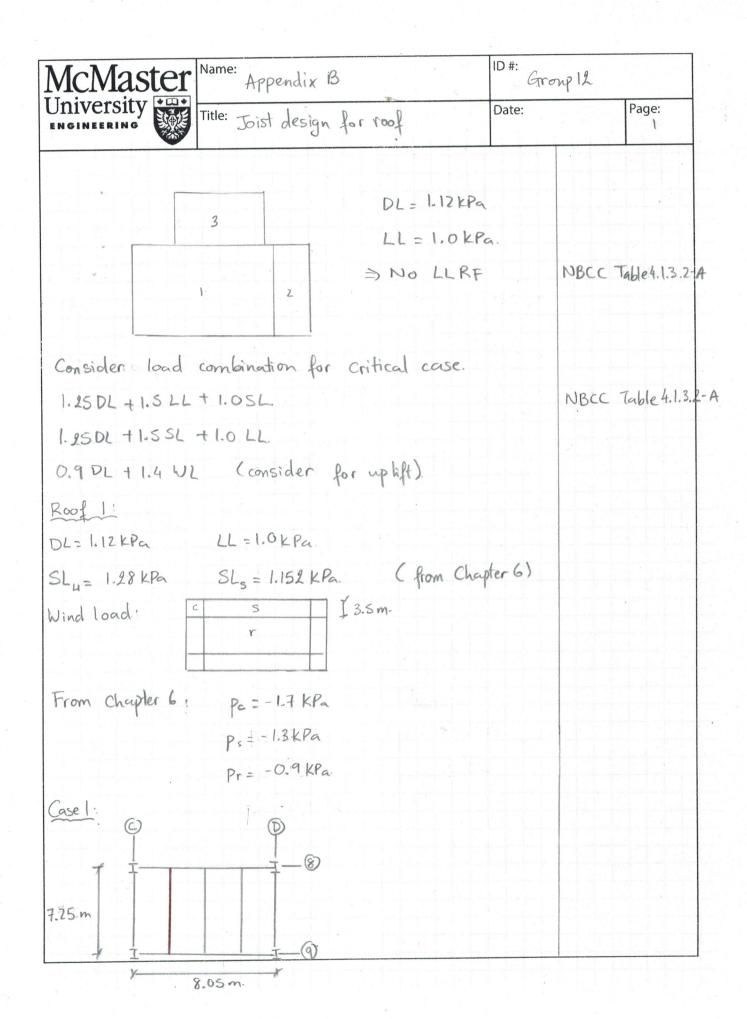
Table 9 shows factored and resistant load, deflection of chosen section for floor slab and steel deck design.

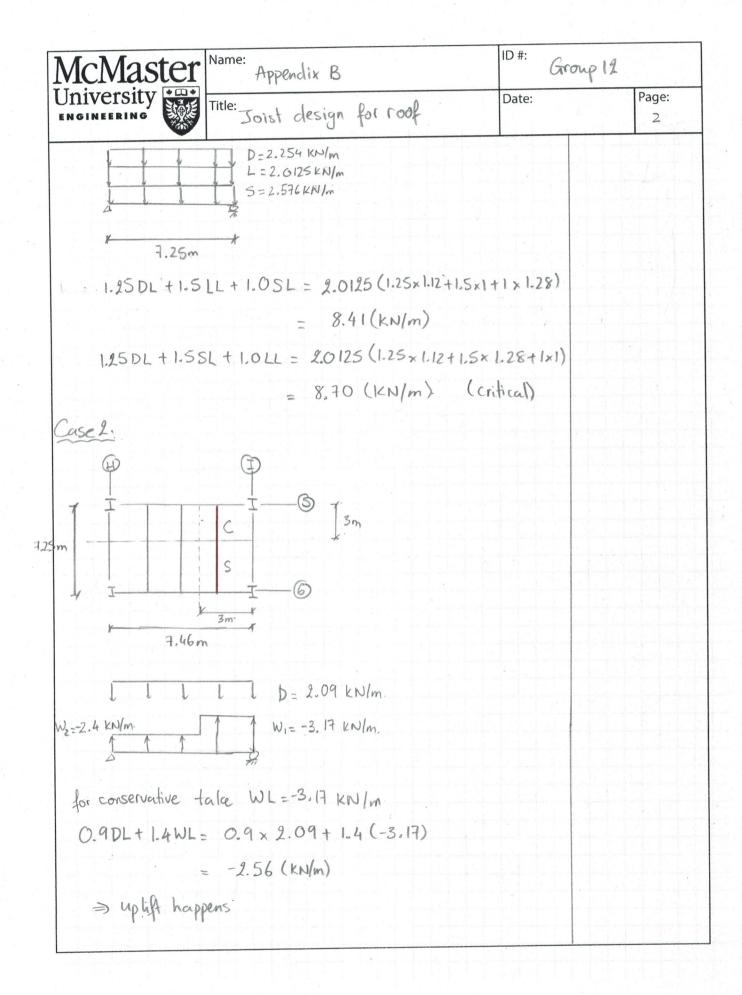
		Critical	Case		L	oad	Defle	ection	
Level	Load type	Slab thick (mm)	Deck thick (mm)	Span (mm)	Factored load (kPa)	Resistance load (kPa)	Δ _{max} (mm)	Δ _{limit} (mm)	Section
Market Floor	Gravity	90	1.12	1812.5	13	15.99	0.62	5	P-3615
Main Building Floor	Gravity	90	1.12	1812.5	13	15.99	0.62	5	P-3615
	Gravity	-	0.76	1812.5	4.32	8.94	15.4	22.4	P-2436
Roof 1	Uplift	-	0.76	1812.5	1.3	8.94	-	-	Туре 22
	Gravity	-	1.21	2125	10.62	13.19	5	5.9	P-2436
Roof 2	Uplift	-	1.21	2125	1.37	13.19	-	-	Туре 18
	Gravity	-	1.21	1875	10.62	13.19	5	5.9	P-2436
Roof 3	Uplift	-	1.21	1875	1.37	13.18	-	-	Туре 18


Table 9: Floor Slab and Steel Deck Design Summary

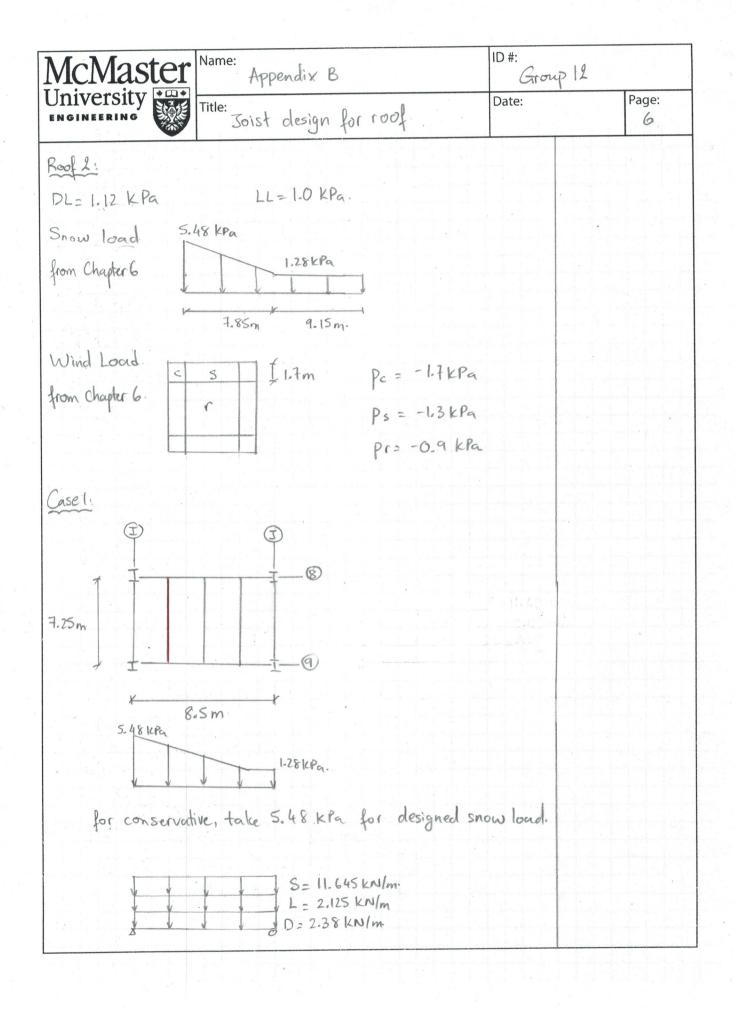


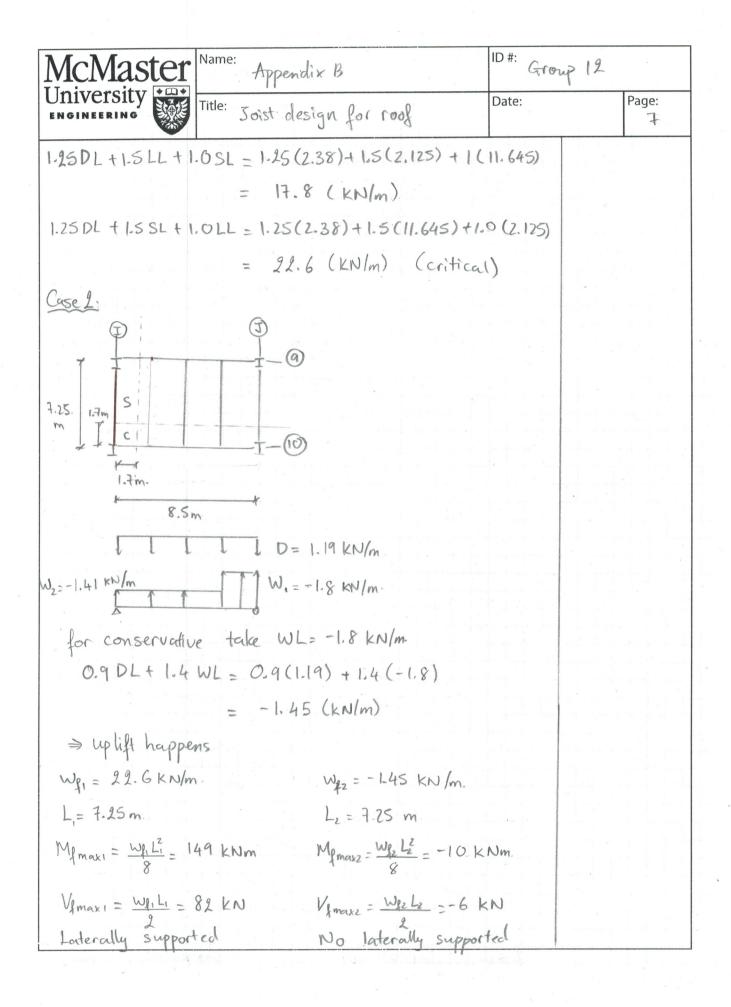
REFERENCES


CANAM. (n.d.). Steel Deck A division of Canam Group.
Razak, S. M., Kong, T. C., Zainol, N. Z., Adnan, A., & Azimi, M. (2017). A Review of Influence of Various Types of Structural Bracing to the Structural Performance of Buildings. https://doi.org/10.1051/e3sconf/20183401010

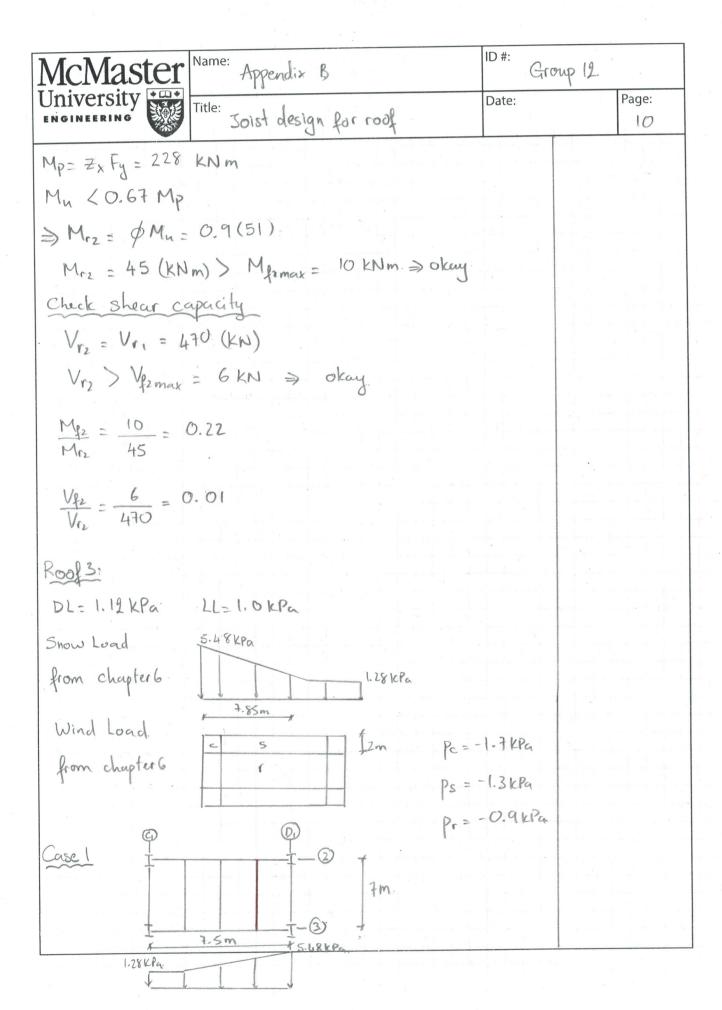


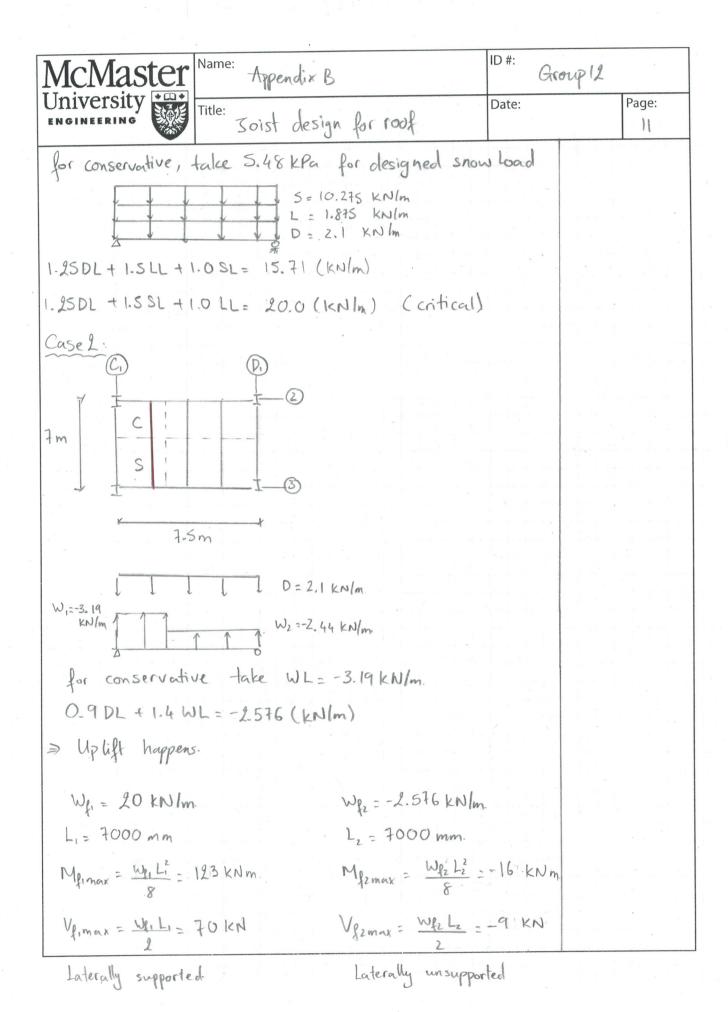
.

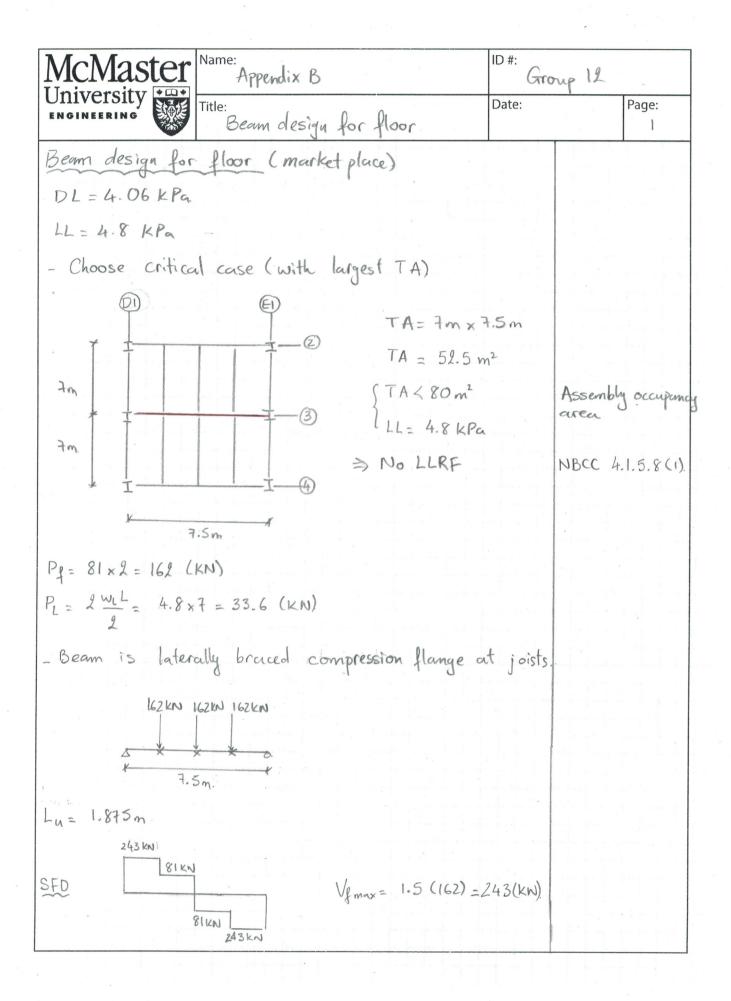


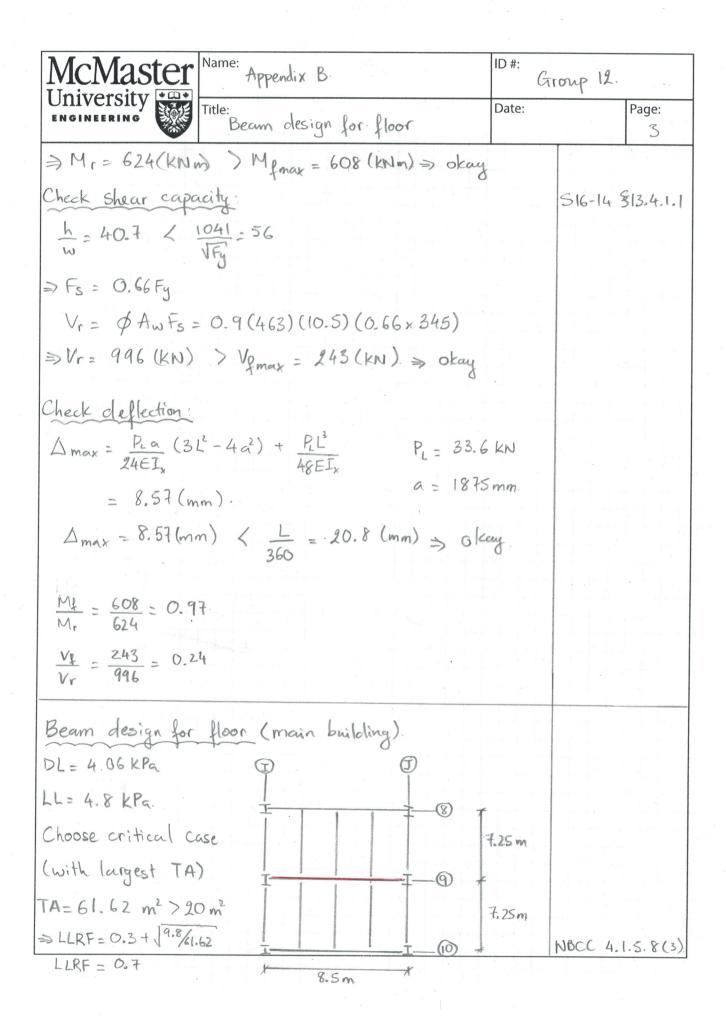

MCMaster
UniversityName:
Appendix BID #:
Group 12Inte:
Joist design for roofDate:Page:
3
$$W_{11} = 8.7 \text{ KN/m}$$
 $W_{12} = -2.56 \text{ KN/m}$ $L_2 = 7.25 \text{ m}$ $M_{1max1} = \frac{W_1 L_2}{2} = 58 \text{ KN/m}$ $M_{1max2} = \frac{W_1 L_2}{8} = -11 \text{ KN/m}$ $V_{1max1} = \frac{W_1 L_2}{2} = 52 \text{ KN}$ $V_{1max2} = \frac{W_1 L_2}{2} = -10 \text{ KN}$ Laterally supportedNo laterally supportedfor compression flangefor compression flange $S2 \text{ KN}$ $V_{1max2} = \frac{W_1 L_2}{2} = -10 \text{ KN}$ $S2 \text{ KN}$ $V_{1max2} = \frac{W_1 L_2}{2} = -10 \text{ KN}$ Laterally supportedNo laterally support edfor compression flangefor compression flange $S2 \text{ KN}$ V_{1max} V_{1max} V_{1max} V_{1max} V_{1max} V_{1max} V_{1max} V_{1max} V_{1max} V

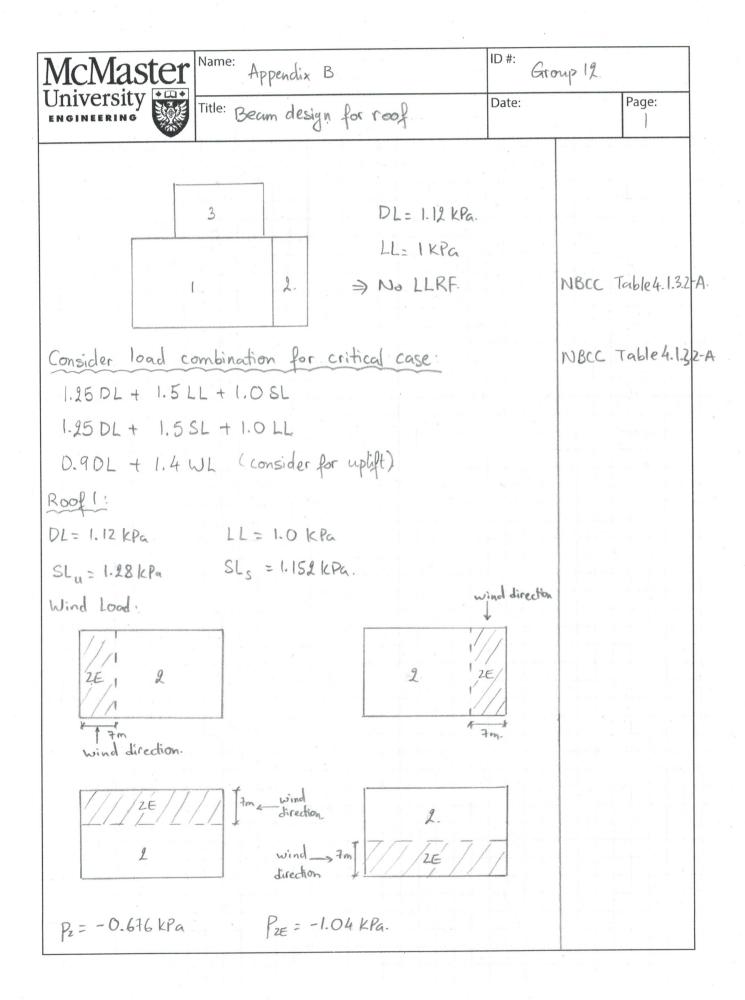
SFD

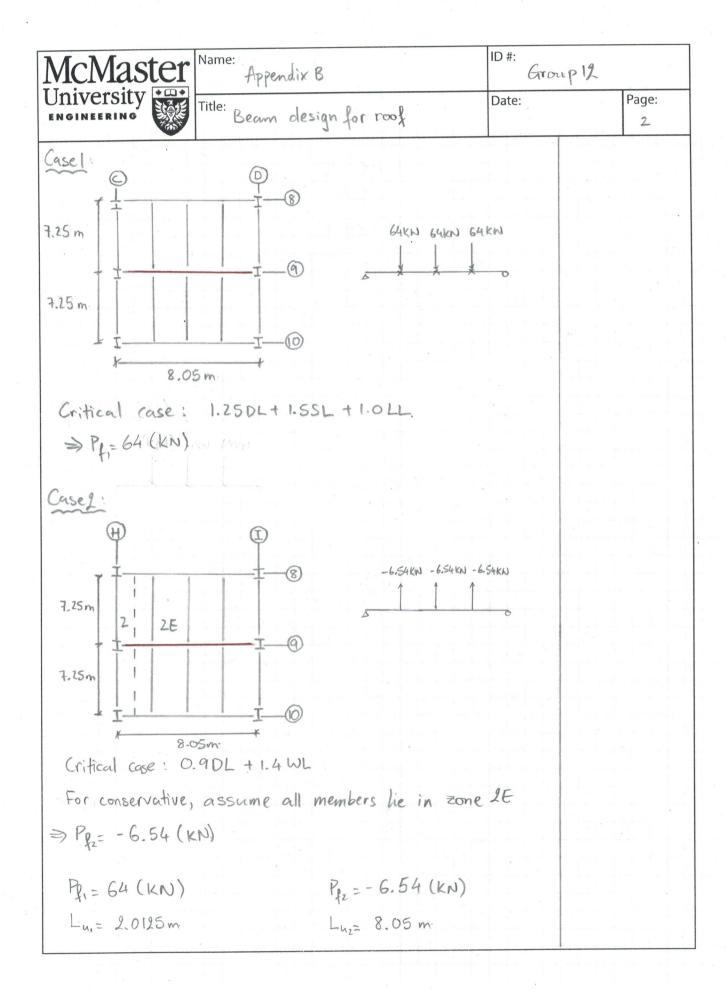

BMD

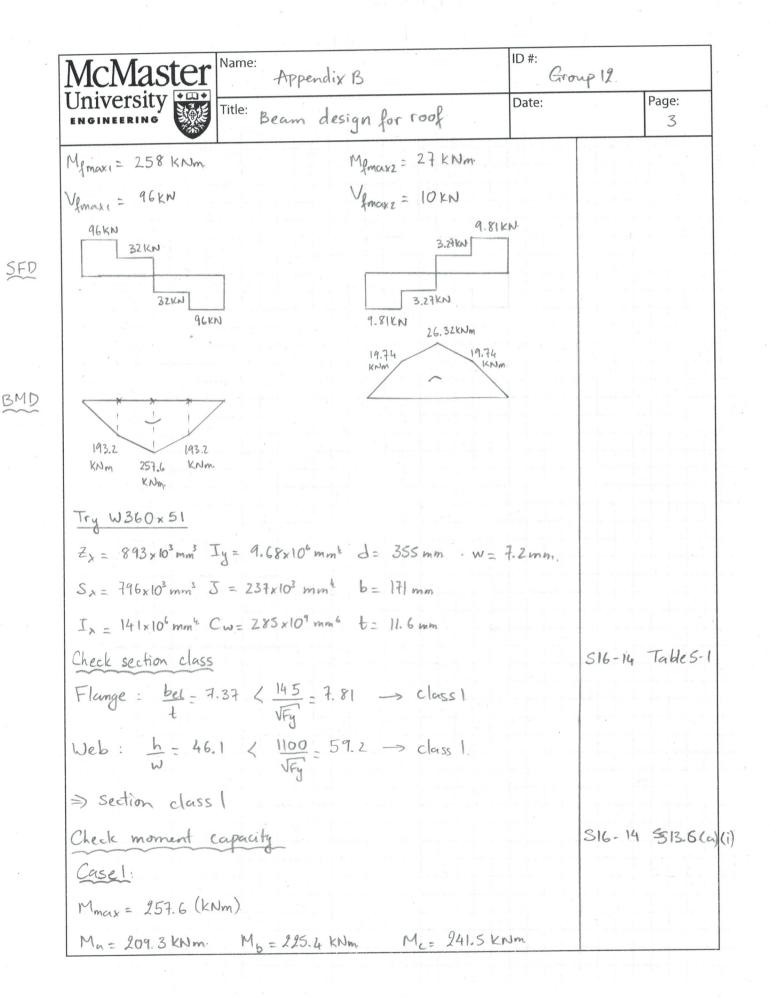

$$\begin{array}{c|c} \hline \textbf{MCMaster} \\ \hline \textbf{McMaster} \\ \hline \textbf{Market} \\ \hline \textbf{Market} \\ \hline \textbf{Market} \\ \hline \textbf{Triteter} \\ \hline \textbf{Soist design for roof} \\ \hline \textbf{Date:} \\ \hline \textbf{Page:} \\ \hline \textbf{Soist design for roof} \\ \hline \textbf{Date:} \\ \hline \textbf{Page:} \\ \hline \textbf{Soist design for roof} \\ \hline \textbf{Date:} \\ \hline \textbf{Page:} \\ \hline \textbf{Soist design for roof} \\ \hline \textbf{Date:} \\ \hline \textbf{Page:} \\ \hline \textbf{Soist design for roof} \\ \hline \textbf{Date:} \\ \hline \textbf{Page:} \\ \hline \textbf{Soist design for roof} \\ \hline \textbf{Date:} \\ \hline \textbf{Page:} \\ \hline \textbf{Soist design for roof} \\ \hline \textbf{Date:} \\ \hline \textbf{Page:} \\ \hline \textbf{Soist design for roof} \\ \hline \textbf{Market} \\ \hline \textbf{M}_{n} = \frac{32}{245} = 0.12. \\ \hline \textbf{M}_{n} = \frac{32}{245} = 0.12. \\ \hline \textbf{M}_{n} = \frac{1250 \text{ mm.}}{1250 \text{ mm.}} \\ \hline \textbf{Check for case L} (laterally unbraced). \\ \hline \textbf{L}_{u} = 7250 \text{ mm.} \\ \hline \textbf{M}_{max} = 13.8 \text{ kNm} \\ \hline \textbf{M}_{n} = 15.8 \text{ kNm} \\ \hline \textbf{M}_{n} = 15.8 \text{ kNm} \\ \hline \textbf{M}_{n} = 15.8 \text{ kNm} \\ \hline \textbf{M}_{n} = \frac{4M_{max}}{L_{u}} \\ \hline \textbf{M}_{max}^{2} + 4M_{u}^{2} + 171_{b}^{2} + 4M_{c}^{2} \\ \hline \textbf{M}_{max} = \frac{1.036 < 2.5}{\sqrt{M_{max}^{2} + 4M_{u}^{4} + 171_{b}^{2} + 4M_{c}^{2}} \\ \hline \textbf{M}_{n} = \frac{(1.036\pi L_{u})}{\sqrt{M_{max}^{2} + 4M_{u}^{4} + 171_{b}^{2} + 4M_{c}^{2}} \\ \hline \textbf{M}_{n} = \frac{(1.036\pi L_{u})}{\sqrt{M_{max}^{2} + 4M_{u}^{4} + 171_{b}^{2} + 4M_{c}^{2}} \\ \hline \textbf{M}_{n} = \frac{42.04 \text{ (kNm)}}{\sqrt{M_{max}^{2} + 116 \text{ (kNm})} \\ \hline \textbf{M}_{n} = 42.04 \text{ (kNm)} \\ \hline \textbf{M}_{n} = 38 \text{ (kNm)} > M_{gmaxz} = 17 \text{ (kNm)} \Rightarrow 0 \text{ or } \textbf{M}_{u} \\ \hline \textbf{M}_{n} = \frac{14}{28} = 0.45 \\ \hline \textbf{M}_{n} = \frac{14}{28} = 0.45 \\ \hline \textbf{M}_{n} = \frac{12}{28} = 0.041 \\ \hline \textbf{M}_{n} = \frac{17}{28} = 0.041$$

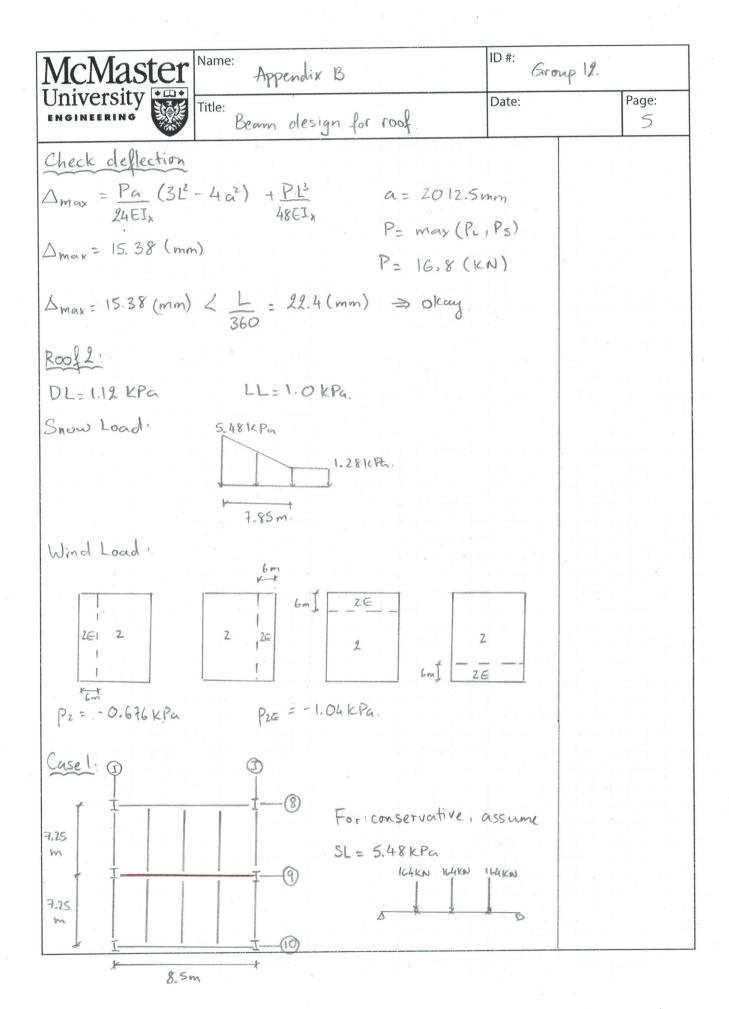


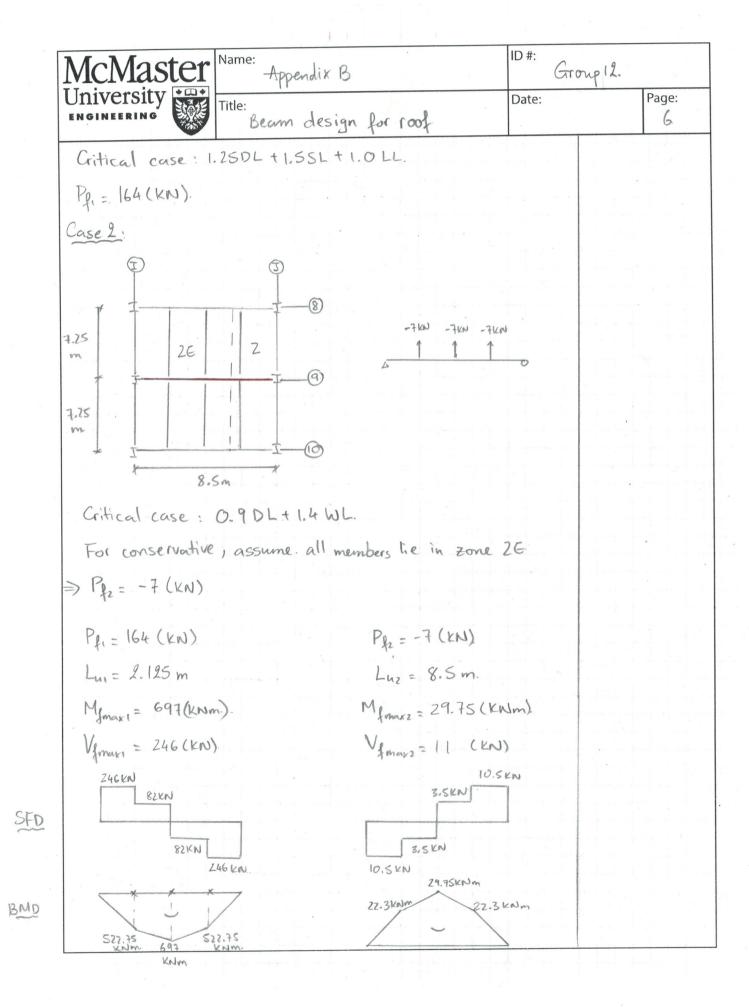


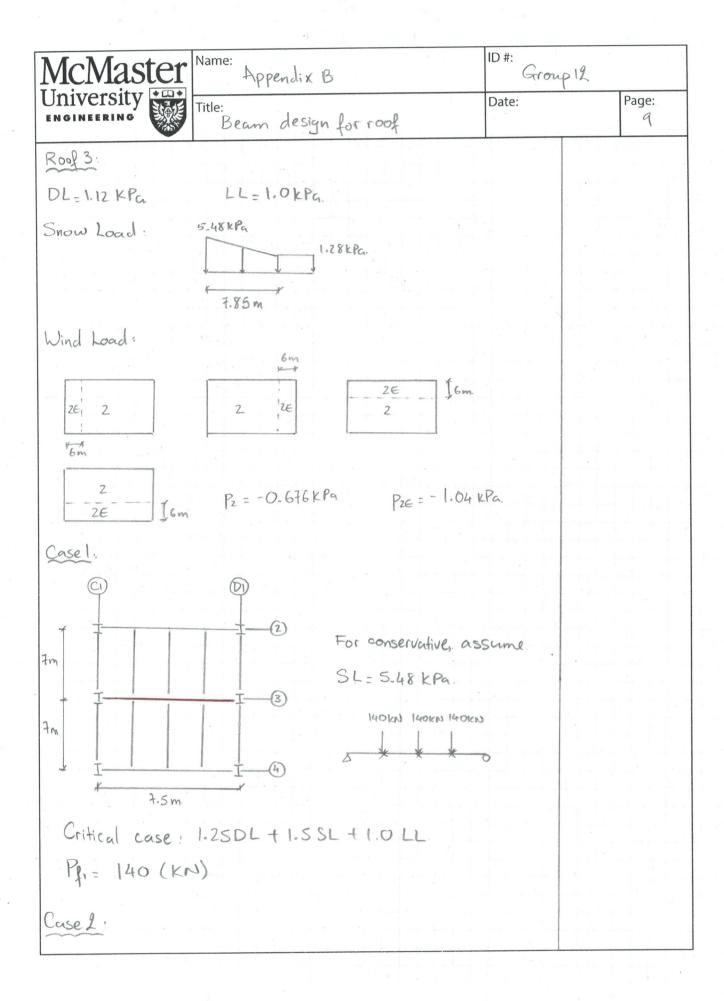

.

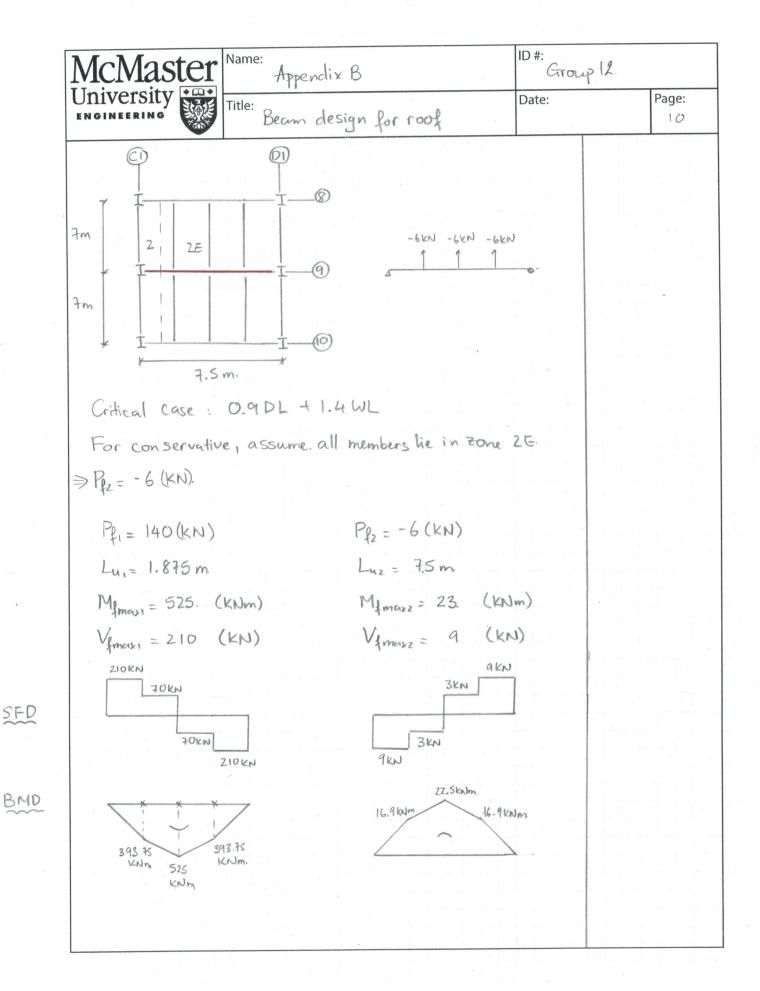












McMaster Name: Appendix B.	ID #: Gro	mp 12	÷
University ENGINEERING Beam design for roof	Date:		Page: 7
Try W530x92		na na na na na	
Zx = 2360 × 103 mm Iy = 23.8 × 10° mm d = 533 mm 1	N = 10.2 mm		
Sx = 2070×10° mm3 J= 762×10° mm4 b= 209 mm			
$I_{x} = 552 \times 10^6 \text{ mm}^4$ $C_{w} = 1590 \times 10^9 \text{ mm}^6 t_2 15.6 \text{ mm}.$			
Check section class:		S16-14	Tables-1
Flange: $\frac{bel}{t} = 6.7$. $\langle \frac{145}{\sqrt{Fy}} = 7.81 \longrightarrow Class 1$			
Web: $\frac{h}{w} = 49.2 < \frac{1100}{\sqrt{Fy}} = 59.2 \longrightarrow class 1$			
⇒ Section class 1			
Check moment capacity			
Casel		516-14	\$ 13.6 GUCi
Mmax= 697 KNm			
Ma = 570 KNm. Mb = 612.4 KNm. Mc = 655 KN	m.		
W2 = 1.13 <2.5			
$M_{u} = \frac{\omega_{2\pi}}{L_{u}} \int EI_{y} GJ \left(\frac{\pi E}{L_{v}}\right)^{2} I_{y} Cw = 3166 (kNm)$			
$M_{P} = Z_{x} F_{y} = 814.2 (KNm)$			
Mu> 0.67 Mp			
\Rightarrow Mn=1.15 ϕ Mp $\left[1 - \frac{0.28 Mp}{M_{H}}\right] = 782(KNm) > \phi$ Mp=7	32 (KNm)		
=> Mr1 = 732 (KNm) > Mgmax1 = 697 (KNm) => Okay			
Case 2 :		516-14	\$13.6(a)
Mmax = 30 KNm.			
$M_{a} = M_{c} = 22.3 \text{ kNm}$ $M_{b} = 30 \text{ kNm}$			

McMaster
UniversityName:
Appendix BID #:
Croup 12.Inte:Column DesignDate:Page:
A.ColumnDatesDate:Page:
A.Note:This section is best read while reterring to stret plans of
Retain for Arding Goods on these columns is definition report
to analyze but excision
to analyze but excision
$$1.28 LPr$$
Page:
A.DistThe rots section is best read while reterring to stret plans of
Retain for Arding Goods on these columns is definition report
to analyze but excision
 $1.28 LPr$ Page:
A.DistThe rots Section is best read while reterring to stret plans of
Retain for Arding Goods on these columns is definited in report
to analyze but excision
 $1.28 LPr$ Page:
A.DistThe rots Section is best read while reterring to stret plans of
 $1.28 LPr$ Page:
A.Page:
A.DistThe rots Section is best read while reterring to stret plans
analyze in analyze but excision
to analyze but excision
 $1.28 LPr$ Page:
A.DistThe rots of the rots of the

ID #: Name: **AcMaster** Group 12 Appendix B University Page: Date: Title: Column Design 2 NBCC2015 Pourt of the TA is slanted so calculate roof slope, a 181 $tand = \frac{2}{35} \quad \alpha = 3.3^{\circ} \quad \frac{1}{\cos 3.5} = 1.00 \ Zkla \rightarrow nealigible$ TA= 7.25 × 7.98= 57.9 m2 Loads by type on 18 $C_{S} = \frac{87 + 1.28 \text{k} \text{fa} \times 57.9 \text{ m}^{2} = 161.2 \text{ kN}}{1.2 \text{ k} \text{fa} \times 57.9 \text{ m}^{2} = 65.0 \text{ kN}}$ $C_{L} = 1 \text{ k} \text{fa} \times 57.9 \text{ m}^{2} = 58.0 \text{ kN}$ $\int \text{for } 0.27.$ 6 than compensates for 0.2% increase TABLE 4.1.3.2 A CF= 1.250+1.55+1.0L =1.25+65+1.5×161.2+58=381.1KN 40 this factored load is greater than J8's so it governs Another critical column is DG as it is almost Gm \$ has large TA TA= 7.07 × 7.15 = 50.6 m2 DG CD= 50.6×1.12 × 1.00 Z= 56.8 KN CS= 50.6 × 1. 28 × 1.00 2 = 64.9 EN CL= 50.6 ×1 × 1.00 Z = 50.8 KN TABLE 4.1.3.2.A CF = 1.25×0+1.55+1.0L = 1.25×56.8 +1.5×64.9 + 50.8 = 219.2 KN Note: Design will occur after. Load analysis first

McMaster Name: Appendix B	ID #: Group	12
University ENGINEERING Title: Column Design	Date:	Page:
4TH STOREY COLUMNS (EXTERIOR)		NBCC 2015
14 KL=4m but extra load due to drift The snow drift analysis on p.1 showed 87 KN for columns on grid I, with t	that lood was mbotary width=7:2	5m
(> Tributary Width is 7.75m = 3.58m		
Show load due to drift = $87 \times \frac{3.58}{7.25} = 42.9 \text{ k}$ TA = $3.58 \text{ m} \times \frac{15.9 \text{ cm}}{2} = 28.57 \text{ m}^2$		
Loads by type on 14		
$C_{s} = 28.57m^{2} \times 1.28kR_{g} + 42.9kN = 80$ $C_{p} = 28.57m^{2} \times 1.12kR_{g} = 32.0kN$ $C_{L} = 28.57m^{2} \times 1.0kR_{g} = 28.6kN$	9.0 KN	
$C_{f} = \frac{1.250 + 1.55 + 1.0L}{1.25 \times 32 + 1.5 \times 36.6 + 78.6}$ $= 123.5 \text{ kN}$		TABLE 4.1.3,2A
$\overline{D4}$ D4 is Gn ball and has a large tril $\overline{TA} = \frac{15.15}{2} \times \frac{7.15}{2} = 27.1 \text{ m}^2$	butary ownen	
Locids by type on D4		
$C_{0} = 27.1 \times 1.28 = 34.7 \text{ kN}$ $C_{0} = 27.1 \times 1.12 = 30.4 \text{ kN}$ $C_{L} = 27.1 \times 1.0 = 27.1 \text{ kN}$		
CF=1.250+1.55+1.0L =1.25+30.4+1.5+34.7+27.1 =117.2 KN		7482 E 4.1.3.74
$\begin{array}{c} \boxed{34} & TA = 8.5 \times \frac{7.15}{2} = 30.4 m^2 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	be used on r levels	

McMaster	Name: Appendix B	ID #: Group	12.
	Title: Column Design	Date:	Page:
1541 Largest Frost Floo	TA on exterior or above: CS=GIEN C	$c_0 = 34.1 \text{ BU } C_L = 30.4.1 \text{ BU } C_L = 30.1.1 \text{ BU } C_L = 30.$	EN NIBCC 201
	TA= 30.4 m2	- 07	34.15.8(3
	$= 0.3 + \sqrt{9.8/30.4} = ($	\mathcal{O} , \mathcal{B} (14.1.3.003
$C_{3} = C_{3}$ $C_{0} = 3$	Eype on J4 61 KN 64 / 430.4 × 4.06 + 8.5m× 30.4 + (30.4 × 4.8) × 0.87=	7.2 KIV/m = 218.8 KN 157.4 KN	
212	50+1.5L+1.05 5×218.8+1.5×157.4 +0 70.6 KN		THELE 4.1.3.26
Lo J4 gover	ns ext. columbas on 3rc	d storey	
			Norman da Distancia da Anglan

McMaster Name: Appendix B	ID #: Group	12.
Jniversity ENGINEERING Title: Column Design	Date:	Page: 7
2ND STOREY COLUMNS (INTERIOR)	NBCC 2015
[JE] Column here governed last tim From level above: Cs=12: Reduceable TA= 2+61.7=123.4m		
LLRF= 0.3 + (9.8/123.4 =		24,1,5.8(3)
Loads by type on J8		
$C_{S} = 123 \text{ kN}$ $C_{D} = 3/9.7 + G1.7 \times 4.06 =$ $C_{L} = G1.7 + C.G1.7 \times 4.8 \times 2$	570.3KN)059=911.2KN	
CF=1.25D+1.5L+1.05 =1.25×570.3+1.5×411.2+ = 1452.7 KN	F 123	TACKE 4.1.3.2A
(E4) Column inbetween farm and ⇒ Using D4 loads to find G4 TW E4/TWD4 = 15.15m = 0	market loads >Using trib width (0.94	(Tw)
La Loads would be similar: use Cs=34.7KN Cp-195.0	04 loods from floor abo	le .
Loads from market roof: D=1.12 KPG L=1 KPG S=1.2	8 Kla typ	
SNOW DRIFT 5.418 kRa $S_6=2.24kRa$ G_{4} f	$S_{c} = (5.48 - 1.28) \times \frac{1.85}{7.85} + 1.28$ $= 2.24 \text{ kPm}$	
Gui Saeift=(5.48-2.24)× Gm× 14.4m×1×2 2 2 2 2	$\frac{2}{3} = 23.4 \text{ kN}$	
DN FZ-3 Coad will be overesting to facilitate a conservation Speift = (5.48-2.24) × Gm × 7.5m × 1/2×1/3	ited as 2.24 km to the right ice estimate = 12.21c N	ht

University ENGINEERING THE Column Design Date: Page Title: Column Design Det: Page (G4) CONTO Loads by type on G4 $C_5 = 34.7 + 73.4 + 2.24 k k_1 \times \frac{k_1.4m}{2} \times 6m \times \frac{1}{2} = /06.5 k N$ $C_9 = 1.95 k N + 1.12 k R \times \frac{k_1.4m}{2} \times \frac{m}{2} + 4.08 k R_1 \times \frac{14.4m}{2} \times \frac{7.15m}{2}$ $+ 4.8 k N/m \times \frac{14.4m}{2}$ = 358.8 k N Reducable $7A = 2 \times \frac{k_1.4}{2} \cdot \frac{7.15}{2} = 51.5 m^2$ $LLRF = 0.3 + \sqrt{\frac{98}{51.5}} = 0.74$ $C_L = (27.1 + 1/k R \times \frac{14.4}{2} \times \frac{6}{2}) + (4.8 k R_1 \times \frac{14.4}{2} \times \frac{7.15}{2} \times 2^{-}) \times 0.74$ = 231.6 k N $C_{f=1.250+1.5 L + 1.0 S}$ $= 1.25 \times 358.8 + 1.5 \times 231.6 + 106.5$ = 902.41 k N FZ=3 There ior market column from prevs analysis $7A = 7m \times 7.5m = 52.5m^2$ $C_s = 2.24 \times 52.5 = 10.76 k N$ $C_{t=1.7 \times 52.5 = 52.5 k N$ $C_{t=1.7 \times 52.5 = 52.5 k N$ $C_{t=1.7 \times 52.5 = 52.5 k N$	ID #:	McMaster Name: Appendix B	2
Loads by type on 614 $C_{5} = 34.7 + 23.4 + 2.24 k R_{4} \times \frac{14.4m}{2} \times 6m \times \frac{1}{2} = 106.5 k N$ $C_{5} = 195 k N + 1.12 k R_{6} \times \frac{14.4m}{2} \times \frac{2}{2} \times 108 k R_{1} \times \frac{14.4m}{2} \times \frac{7.15}{2} = 358.8 k N$ $k edueabk 7A = 2 \times \frac{14.4}{2} \times \frac{7.15}{2} = 51.5 m^{2} = 72$ $LLRF = 0.3 + \sqrt{\frac{18}{51.5}} = 0.744$ $C_{L} = (27.1 + 1/k R_{8} \times \frac{14.4}{2} \times \frac{2}{2}) + (4.8 k R_{8} \times \frac{14.4}{2} \times \frac{7.15}{2} \times 2) \times 0.74$ $= 221.6 k N$ $C_{4} = 1.250 + 1.5 L + 1.0 S$ $= 1.25 \times 358.8 + 1.5 \times 231.6 = 106.5$ $= 702.44 k N$ $F2-3$ $Inherior market column$ $\Rightarrow Using S = 2.24 k R_{1} as seen from prevs analysis$ $7A = 7m \times 7.5m = 52.5m^{2}$ $C_{5} = 2.24 \times 52.5 = 117.6 k N$ $C_{4} = 1.250 + 1.55 + 1.0 L$ $= 1.25 \times 58.8 + 1.5 \times 117.6 + 52.5$	Date:		Page:
$C_{5} = 34.7 + 2.44 + 2.24 k k_{1} \times \frac{14.4m}{2} \times (cm \times \frac{1}{2} = 106.5 k \text{N})$ $C_{9} = 195 \text{ kN} + 1.12 \text{ kR} \times \frac{14.4m}{2}, \frac{cm}{2} + 4.08 \text{ kR} \times \frac{14.4m}{2} \times \frac{7.15}{2}$ $+ 4.8 \text{ kN}/m \times \frac{14.4m}{2}$ $= 358.8 \text{ kN}$ Reduceable: $7A = 2 \times \frac{14.4}{2} \times \frac{7.15}{2} = 51.5 \text{ m}^{2} - 7.15$ $LLRF = 0.3 + \sqrt{\frac{98}{51.5}} = 0.744$ $C_{L} = (27.1 + 1/k \text{ R} \times \frac{14.4}{2} \times \frac{6}{2}) + (4.8 \text{ kR} \times \frac{14.4}{2} \times \frac{7.15}{2} \times 2) \times 0.74$ $= 231.6 \text{ kN}$ $C_{f} = 1.250 + 1.5 \text{ L} = 1.0 \text{ S}$ $= 52.5 \text{ m}^{2}$ $C_{S} = 2.24 \text{ kR} \text{ as seen from prevs conclusis}$ $TA = 7m \times 7.5m = 52.5m^{2}$ $C_{S} = 2.24 \times 52.5 = 117.6 \text{ kN}$ $C_{L} = 1.250 + 1.55 \pm 1.06 \text{ m}^{2}$ $C_{L} = 1.250 + 1.55 \pm 1.766 \text{ kN}$ $C_{P} = 1.12 \times 52.5 = 52.5 \text{ kN}$ $C_{L} = 1.250 + 1.55 \pm 1.06 \text{ m}^{2}$ $C_{L} = 1.250 + 1.55 \pm 1.06 \text{ m}^{2}$ $C_{L} = 1.250 + 1.55 \pm 1.06 \text{ m}^{2}$ $C_{L} = 1.250 + 1.55 \pm 1.06 \text{ m}^{2}$ $C_{L} = 1.250 + 1.55 \pm 1.06 \text{ m}^{2}$ $C_{L} = 1.250 + 1.55 \pm 1.06 \text{ m}^{2}$ $C_{L} = 1.250 + 1.55 \pm 1.06 \text{ m}^{2}$ $C_{L} = 1.250 + 1.55 \pm 1.06 \text{ m}^{2}$ $C_{L} = 1.250 + 1.55 \pm 1.06 \text{ m}^{2}$ $C_{L} = 1.250 + 1.55 \pm 1.06 \text{ m}^{2}$ $C_{L} = 1.250 + 1.55 \pm 1.06 \text{ m}^{2}$ $C_{L} = 1.250 + 1.55 \pm 1.06 \text{ m}^{2}$ $C_{L} = 1.250 + 1.55 \pm 1.06 \text{ m}^{2}$		G4 CONTO	WBCCZOF,
$ + 4.8 \ kN/m \times \frac{14.4m}{2} = 358.8 \ kN $ $ ledueable TA = 2 \times \frac{14.4}{2} \cdot \frac{7.15}{2} = 51.5 \ m^2 = 7.12 $ $ LLRF = 0.3 + \sqrt{\frac{18}{51.5}} = 0.74 $ $ C_L = (27.1 + 1/kR \times \frac{14.4}{2} \times \frac{6}{2}) + (4.8 \ kR \times \frac{14.4}{2} \times \frac{7.15}{2} \times 2) \times 0.74 $ $ = 231.6 \ kN $ $ C_{f} = 1.250 + 1.5 \ L = 1.0 \ S $ $ = 1.25 \times 358.8 + 1.5 \times 231.6 + 106.5 $ $ = 702.41 \ kN $ $ \overline{F2-3} Interior market \ column \\ \rightarrow Using \ S = 2.24 \ kR \ as \ seen \ from \ prevs \ conclusis $ $ TA = 7m \times 7.5m = 52.5m^2 $ $ C_{s} = 2.24 \times 52.5 = 117.6 \ kN $ $ C_{L} = 1 \times 52.5 = 52.5 \ kN $ $ C_{L} = 1 \times 52.5 = 52.5 \ kN $ $ C_{L} = 1 \times 52.5 = 52.5 \ kN $ $ C_{L} = 1 \times 52.5 = 52.5 \ kN $ $ C_{L} = 1.55 + 1.55 + 1.0L $ $ = 1.25 \times 58.8 + 1.5 \times 117.6 + 52.5 $			
$\begin{array}{l} + 4.8 \ kN/m \times \frac{14.4m}{2} \\ = 358.8 \ kN \\ \text{Reduceable } 7A = 2 \times \frac{14.4}{2} \cdot \frac{7.15}{2} = 51.5 \ m^2 = 7.1 \\ \text{LLRF} = 0.3 + \sqrt{\frac{18}{51.5}} = 0.74 \\ \text{CL} = (27.1 + 1/kR \times \frac{14.4}{2} \times \frac{6}{2}) + (4.8 \ kR \times \frac{14.4}{2} \times \frac{7.15}{2} \times 2^{-}) \times 0.74 \\ = 231.6 \ kN \\ \text{Cf} = 1.250 + 1.5 \ L + 1.0 \ S \\ = 1.25 \times 358.8 + 1.5 \times 231.6 + 106.5 \\ = 902.41 \ kN \\ \hline \text{F2-3} \text{Interior market column} \\ \Rightarrow Using \ S = 2.24 \ kR_{1} \ as seen from prevs analysis \\ 7A = 7m \times 7.5m = 52.5m^{2} \\ \text{Cs} = 2.24 \times 52.5 = 52.5 \ kN \\ \text{CL} = 1 \times 52.5 = 52.5 \ kN \\ \hline \text{CL} = 1 \times 52.5 = 52.5 \ kN \\ \hline \text{Cf} = 1.250 + 1.55 + 1.01 \\ = 1.25 \times 58.8 + 1.5 \times 117.6 \ \epsilon = 52.5 \\ \hline \text{Mark} \\ \hline \text{Cf} = 1.25 \times 58.8 + 1.5 \times 117.6 \ \epsilon = 52.5 \\ \hline \text{Mark} \\ \hline \text{Cf} = 1.25 \times 58.8 + 1.5 \times 117.6 \ \epsilon = 52.5 \\ \hline \text{Mark} \\ \hline \text{Cf} = 1.25 \times 58.8 + 1.5 \times 117.6 \ \epsilon = 52.5 \\ \hline \text{Mark} \\ \hline \text{Cf} = 1.25 \times 58.8 + 1.5 \times 117.6 \ \epsilon = 52.5 \\ \hline \text{Cf} = 1.25 \times 58.8 + 1.5 \times 117.6 \ \epsilon = 52.5 \\ \hline \text{Cf} = 1.5 \times 117.6 \ \epsilon = 52.5 \$	$^{m} \times 6m \times \frac{1}{2} = 106.5 \text{ kN}$ + 08 kBa × 14.4m × 7.15m	$C_{5} = 34.7 + 23.4 + 2.24 k R_{1} \times \frac{14.4m}{2} \times 6m$ $C_{0} = 195 k N + 1.12 k R_{0} \times \frac{14.4m}{2} \times \frac{6m}{2} + 4.08 k$	
$LLRF = 0.3 + \sqrt{\frac{48}{51.5}} = 0.74$ $C_{L} = (27.1 + 1/kR_{A} \times \frac{14.4}{2} \times \frac{6}{2}) + (4.8kR_{A} \times \frac{14.4}{2} \times \frac{7.15}{2} \times 2^{-}) \times 0.74$ $= 23 .6 kN$ $C_{f} = 1.250 + 1.5L + 1.0S$ $= 1.25 \times 358.8 + 1.5 \times 23 .6 + 106.5$ $= 902.41 kN$ $F2-3$ $Interior market column$ $\Rightarrow Using S = 2.24 kR_{A} as seen from prevs analysis$ $7A = 7m \times 7.5m = 52.5m^{2}$ $C_{s} = 2.24 \times 52.5 = 117.6 kN$ $C_{L} = 1 \times 52.5 = 52.5 kN$ $C_{f} = 1.250 + 1.5S + 1.0L$ $= 1.25 \times 58.8 + 1.5 \times 117.6 + 52.5$	2 2	+ 4.8 KN/m × 14.4m	
$LLRF = 0.5 + 7.51.5 0.044$ $C_{L} = (27.1 + 1/kRa \times \frac{14.4}{2} \times \frac{6}{2}) + (4.8 kRa \times \frac{14.4}{2} \times \frac{7.15}{2} \times 2^{-1}) \times 0.74$ $= 231.6 + N$ $C_{f} = 1.250 + 1.5 + 1.0 S$ $= 1.25 \times 358.8 + 1.5 \times 231.6 + 106.5$ $= 702.41 + KN$ $IE2-3 Interior market column$ $\Rightarrow Using S = 2.24 + kRa as seen from prevs analysis$ $TA = 7m \times 7.5m = 52.5m^{2}$ $C_{s} = 2.24 \times 52.5 = 117.6 + KN$ $C_{D} = 1.12 \times 52.5 = 52.5 + KN$ $C_{f} = 1.050 + 1.55 + 1.0L$ $= 1.25 \times 58.8 + 1.5 \times 117.6 + 52.5$	$m^2 = 72$	Reducable $TA = 2 \times \frac{14.4}{2} \times \frac{7.15}{2} = 51.5 m^2$	
$= 23 .6 \times N$ $C_{f} = 1.250 + 1.5 L + 1.0 S$ $= 1.25 \times 358.8 + 1.5 \times 23 .6 + 106.5$ $= 902.41 \times N$ $F2-3 Interior market column$ $\Rightarrow Using S = 2.24 \times R_{f} \text{ as seen from prevs analysis}$ $TA = 7m \times 7.5m = 52.5m^{2}$ $C_{s} = 2.24 \times 52.5 = 117.6 \times N$ $C_{0} = 1.12 \times 52.5 = 58.8 \times N$ $C_{L} = 1 \times 52.5 = 52.5 \times N$ $C_{f} = 1.050 + 1.55 + 1.0L$ $= 1.25 \times 58.8 + 1.5 \times 117.6 + 52.5$	74	LLRF = 0.3+ 19.8/51.5 = 0.74	34,1,5.813
$Cf = 1.250 + 1.5L = 1.0S$ $= 1.25 \times 358.8 + 1.5 \times 231.6 + 106.5$ $= 902.41 \text{ kN}$ $F2-3 Interior market column$ $\Rightarrow Using S = 2.24 \text{ kBi as seen from prevs analysis}$ $TA = 7m \times 7.5m = 52.5m^{2}$ $C_{8} = 2.24 \times 52.5 = 117.6 \text{ kN}$ $C_{D} = 1.12 \times 52.5 = 58.81\text{ kN}$ $C_{L} = 1 \times 52.5 = 52.5 \text{ kN}$ $C_{F} = 1.250 + 1.5S + 1.0L$ $= 1.25 \times 58.8 + 1.5 \times 117.6 + 52.5$	$R_{a} \times \frac{14.4}{2} \times \frac{7.15}{z} \times 2^{-1}) \times 10^{-10}$	CL=(27.1+1kPa× 14.4×6)+(4.8 kPa×	1
= 902.41 kN F2-3 Interior market column \Rightarrow Using S=2.24 kRa as seen from prevs analysis $TA = 7m \times 7.5m = 52.5m^2$ $C_8 = 2.24 \times 52.5 = .117.6 \text{ kN}$ $C_0 = .1.12 \times 52.5 = 58.81 \text{ kN}$ $C_L = 1 \times 52.5 = 52.5 \text{ kN}$ $C_L = 1.250 + 1.55 + 1.0L$ $= 1.25 \times 58.8 + 1.5 \times 117.6 + 52.5$		= 231.6 KN	~
$TA = 7m \times 7.5m = 52.5m^{2}$ $C_{8} = 2,24 \times 52.5 = .117.6 \text{ KN}$ $C_{D} = 1.12 \times 52.5 = 58.81\text{ KN}$ $C_{L} = 1 \times 52.5 = 52.5 \text{ KN}$ $C_{L} = 1.250 + 1.55 + 1.0 \text{ L}$ $= 1.25 \times 58.8 + 1.5 \times 117.6 + 52.5$			THISLE 4.1.3.22
$C_{s} = 2, 24 \times 52.5 = 117.6 \text{ KN}$ $C_{D} = 1.12 \times 52.5 = 58.81\text{ KN}$ $C_{L} = 1 \times 52.5 = 52.5 \text{ KN}$ $C_{f} = 1.250 + 1.55 + 1.0 \text{ L}$ $= 1.25 \times 58.8 + 1.5 \times 117.6 + 52.5$	n preus analysis	0	
$(f = 1.250 + 1.55 + 1.0L) = 1.25 \times 58.8 + 1.5 \times 1(7.6 + 52.5)$		Cs = 2, 24×52.5= 117.6 KN Cp= 1.12×52.5= 58.812N	
		= 1.25 × 58.8+1.5 × 117.6 + 52.5	MOLE 4.1.3.2 A

McMaster Name: Appendix B	ID #:	ip 12
University ENGINEERING Title: Column Design	Date:	Page:
2ND STOREY COLUMNS (EXTERIOR)		NBCC 2015
[]4] Largest TA on exterior From Floor above: Cs=G1k1	1 G=218.8 EN	2
Reducedo le TA = 30.4×2=60.8		
LLRF = 0.3 + 19.8/60.8 = 0	-73	34.1.5.8(3)
Loads by type on 34		
Cs = GI KN Co = 218.8 + 4.06 × 30.4 + 4.8 KN, CL = BO.4 + (30.4 × 4.8 × 2) × 0.71	m × 8.5m = 383.1 kN = 237.7 kN	
$Cf = 1.25 D + 1.5L + 1.0S \\= 1.25 \times 383.1 + 1.5 \times 237.7 + 6 \\= 896.5 KN$	1	74815 4.1.3.2A
172-11 Largest TA on exterior for Mar	-ket	
Total 7A= 7.5×7×2=26.25m2		
Loads by type on F2-1		
$C_{S} = 1.28 \times 26.25 = 33.6 \text{ kN}$ $C_{O} = 1.12 \times 26.25 = 29.4 \text{ kN}$ $C_{L} = 1 \times 26.25 = 26.25 \text{ kN}$		
Cf = 1.250+1.5S + 1.0L = 1.25×29.4+1.5×33.6 + 26.3 = 113.5 KN	3	TABLE 4.1.3.2A

•

McMaster Name: Appendix B	ID #: Group	12
University ENGINEERING Title: Cohumn Design	Date:	Page: <i> </i> ()
1ST STOREY COLUMNS (INTERIOR) [J8] From level above: CS=123KN CD=570.3KN		WBCC ZOIS
$\frac{ 38 }{ 185.13m^2 } = \frac{ 38 }{ 185.13m^2 } = 0.3 + \sqrt{9.8/185.13m^2 } = 0.53$		24.15.83
Loads by type on 38 $C_{5} = 123 \text{ kN}$ $C_{p} = 570.3 + 61.7 \times 4.06 = 820.9 \text{ kN}$		
$C_{b} = 570.3 + 61.7 \times 4.06 = 820.972N$ $C_{L} = 61.7 + (61.7 \times 4.8 \times 3) \times 653 = 532.62N$ $C_{f} = 1.25D + 1.5L + 1.0S$ $= 1.25 \times 820.9 + 1.5 \times 532.6 = 123$ $= 194.82N$		TAB2E 4.1.3.20
IGH From level above: Cs = 106.5KN CD = 358.8 * NOTE Live Load from restairant is assembly and ! TA = 14.4 × = = 21.6m ² < 80 no LLRF	skn synder Cupancy	ZH.1,5.8(2
Reduceable $TA = \frac{14.4}{2} \times 7.15 \times 3 = 77.22 m^2$ $LLRF = 0.3 + \sqrt{9.8/77.22} = 0.64$ $C_{5} = 106.5 \text{ kN} + \frac{14.4}{2} \times \frac{13.15}{2} \times 4.06 \text{ kPa} = 55$ $C_{1} = (27.1 + 1 \text{ kPa} \times \frac{14.4}{2} \times \frac{9}{2}) + (4.8 \text{ kPa} \times \frac{14.4}{2} \times \frac{7.15}{2})$ = 397 kN	51 KN ×3)×0.66+4.8×14.4 Z	× 6/2
CF= 1.250 + 1.5L+1.0 S = 1.25×551 + 1.5×397+106.5 = 1391 KN		TALLE 4.1.3.2A
$\frac{F2-3}{F2-3} = 117.6 \text{ kN}$ $\Rightarrow TA = 52.5 \ 100 \text{ N} \text{ m} \text{ preus level: } C_{\text{S}} = 117.6 \text{ kN}$ $C_{\text{S}} = 117.6 \text{ kN}$ $C_{\text{O}} = 58.8 + 4.06 \text{ m} 7 \text{ m} 7.5 = 272.0 \text{ kN}$ $C_{\text{C}} = 52.5 + 4.8 \text{ m} 52.5 = 304.5 \text{ kN}$	Cp=58.8KN (1=5.	z.5kN
CF=1.25D+1.5L+1.05 =1.25×272+1.5×309.5+117.6 =914.4 KN		TABLE 4.1.3.24

McMaster Name: Appendix B	ID #: Group	. 12
University ENGINEERING Title: Column Design	Date:	Page:
AST STOREY COLUMNS (EXTERIDE)		NBEC ZOIS
JA From level above: Cs= GI KN Co=3831k	λJ -	
Reducedble TA=30.4×3 = 91.2 m²		
LLRF = 0.3 + \9.8/91.2 = 0.63		34.1.5.8/3
Loads by type on J4		
Cs=GIEN Co=383.1+4.06×30.4+4.8×8.5=547.42 CL=30.4+(30.4×4.8×3)×0.63=306.2E	N. N	
G=1.25D+1.5L+1.05 =1.25×547.4+1.5×306.2+61 =1205KN		TABLE 41,1,3,2%
E2-1 From level above: CS=33.6 EN CD=29.46 NO LLRF as TAZ 80 TA=26.25	N CL=Z6.25EN	
Loads by type on FZ-1		
$C_{g} = 33.6 \text{ kN}$ $C_{0} = 29.4 + 4.06 \times 26.25 = 136 \text{ kN}$ $C_{L} = 26.25 + 26.25 \times 4.8 = 153 \text{ kN}$		
(f=1.250+1.5L+1.05 =1.25+136+1.5+153+33.6 =433.1 EN		TABLE 4,1.3.24
		-
G		

	Maste		me: A	ppendix	B		ID :	#: Group 12	•*
Univ		Titl	e: C	lolumn	Design	1.	Da	te:	Page:
Cou	LUMN I	DESIGN					overclesiana ction from		CA SIG-A
Sum <u>LvL</u> 4 3 2 1 1 Noti	Marry of Col TAG D8 18 D6 14 D4 J8 14 J8 14 J4 J8 G4 F2-3 J4 F2-3 J4 F2-1 28 G4 F2-3 J4 F2-1 28 G4 F2-3 J4 F2-1 28 G4 F2-3 J4 F2-1 28 G4 F2-3 J4 F2-1 28 G4 F2-3 J4 F2-1 28 G4 F2-3 J4 F2-1 28 G4 F2-3 J4 F2-1 28 G4 F2-3 J4 F2-1 28 G4 F2-3 J4 F2-1 28 G4 F2-3 J4 F2-1 28 G4 F2-3 J4 F2-1 28 G4 F2-3 J4 F2-1 28 G4 F2-3 J4 F2-1 28 G4 F2-3 J4 F2-1 28 G4 F2-3 J4 F2-1 28 G4 F2-3 J4 F2-1 Sone Hat Will Sone Hat Will Sone	Designed to the set of	n is (W) CS 123 162 65 80 35 123 162 65 80 35 123 162 123 162 123 162 123 162 123 162 123 162 162 162 162 162 162 162 162	arco Scer (1N) (1) Co (1) 70 62 57 51 32 29 31 28 301 259 195 146 206 151 219 158 301 259 195 146 206 151 219 158 301 259 206 151 219 158 301 259 206 151 219 158 301 259 206 151 206 151 206 151 207 205 384 207 207 205 384 307 136 153 136 153 146 272 305 384 307 136 153 136	modate below (KN) CF 333 382 220 124 118 927 924 497 563 571 1453 903 897 114 593 303 897 114 593 303 897 114 593 303 897 114 593 303 897 114 593 303 897 114 593 303 897 114 593 303 897 114 593 303 897 114 593 303 897 114 593 303 897 114 593 303 897 114 593 571 1205 571 1205 571 1205 571 1205 571 1205 571 1205 571 1205 571 1205 571 1205 571 1205 571 1205 1005 10	Connel (KN) (LN) (G- 735 395 395 395 1210 735 1680 - 735 1210 735 1200 735 1210 735 735 735 735 735 735 735 735	ction from Chosen Section W200x42 W	CF/Cr 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.77 - - 0.78 0.42 0.75 0.76 0.95 - 0.76 0.95 - 0.76 0.95 - 0.76 0.95 - 0.76 0.95 - 0.76 0.95 - 0.76 0.95 - 0.76 0.95 - 0.60 - 0.60 - 0.60 - 0.60 - 0.60 - 0.60 - 0.60 - 0.60 - 0.60 - - 0.60 - - - - - - - - - - - - -	CS# 516-1 1704-76-102 82 [3.3.]
	LANOTE Ex:	All me with lo	inders	pass		ss check	KL SZC smallest s	b and flange	Table 1 pp. 1-161 B21047.

ID #: Name: **McMaster** Appendix B. Group 12 University 🔛 Page: Date: Title: Bracing Design INEERING NBCC 2015 OADS ON BRACING & COLUMNS ATERAI - Lateral loads consist of Notional Loads & Wind Loads NOTIONAL LOAD SUMMARY Greatest Factored 1.02 02 TABLE Load 1.250+1.56+1.02 02 TABLE Load 1.250+1.56+1.05(KN) 41.1.3-2A Notional Notional Notional DL(KN) LL(KN) SL(KN SL(KN) evel 16.8 13.13 59.0 16.46) Factored KOOF 167.8 (Notional 181.64 (Load per 224 2 Jeach level 63 week 4 58.57 67.69 9.09 3 56.81 224.8 85.5 77.24 Loads on Braces (East to West) D-20m 0.94 Ð **kPa** 44m 35m 4 1.4 KPG Im (9) 4> Mo is Striving moment from forces To calculate Mr there are two unknowns from the braces at grid 4 and 9. The moment that the braces resist will be proportioned by the braces distance from gridline O. -> Let the lateral force resisted by braces at @ be called "F," $22 \times F \times 20 + 55F = M$ 62.27F = M F = 6648.5 KNm = 106.8 KN > Let TL represent tension in left brace and The for right brack -> The resisting tension is based off the width of brace. TL WL + TL WR × WR = F as The TL WR -brace

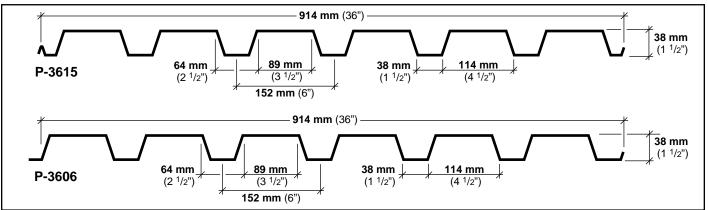
Name: Appendix B ID #: McMaster Group 12 University Page: Date: Title: ENGINEERING Bracing Design 2 Tension on Braces (North to South) Pon from DIBTEMA EL CARTA Method of analysis is still by tension only bracing. To distribute load amongst 4 likes of braces a moment about gridline @ will be clone. It is important to note that the fourth floor diaphragm cis well as the roof only that two lines of braces as the marketplace only extends 2 storeys 1 lm Gum high. 0.94 K.Pa 1.4KPg Driving M about A = 11mx 1.4 kPa x4m x (75m-12)+64mx (0.94 kPa) × 4mx (22)=11900 KNm Asthis is for a 4m tributary height Ediaphragm for 2nd and 3rd Alt Solve: F12 × 18.75/75 × 18.75 + F12 × 56.25 + 75F = M A Ediaphrogm for 2nd and Brd Fir = 121 KN de at grid B braces Foliophragen for 4th flr and of = 159 EN and grid @ braces Note: The bays for the braces are very similar (100mm difference) and thus loads when analyzing braces on the same grid will share the diaphragm load equally. Ex. calc for the roof: Is Tributary height is 3m instead of 4m. Draphragm force at grid @ is 1596N×34 = 119 KN Llongest, for Tension in either brace (uper or lower) Vlongest. -> cheuron brace width = 3625mm height = 6000 mm length of brace= 7010 mm Lo <u>119EN</u> × 7010 = 115.1 KN NOTE: notional loads will be split among the 4 lines of bracing (not just 3 which has done on E-3 W wind) in notional tension found in similar manner as above

McMaster Name: Appendix B	10 #: Group 12.	
University ENGINEERING Title: Bracing Design	Date:	Page:
Left Brace Dims Right Brace Dims $H_L = 4000 \text{ mm}$ $W_L = 34175 \text{ mm}$ $L_L = 5299 \text{ mm}$ $(L_L)_{\text{GN}} = 6934 \text{ mm}$ $(L_L)_{\text{GN}} = 6934 \text{ mm}$	se values are for storey where H=Gm	NBEC 2015
Gm T3m × NOTE: the moment previously calcula Gm LVL4 5m ANOTE: the moment previously calcula 4m LVL3 4m heights, the moment previously call 4m LVL2 4m adjusted with the appropriate mathematical 4m LVL2 4m	manta carrie	/
• Ex ef finding Tension in Left and Right Brace 3/4 F = 3/4 × 106.8 = 80, 1/2 × 10/2 = 19.7	3) from wind	
Using $T_L \stackrel{WL}{=} + T_L \stackrel{WR}{=} \stackrel{WR}{=} = F + N$ to find T_L = 7 (3475 + 4250 + 4250) = 80.1		
$T_{L} \left(\frac{3475}{6934} + \frac{4250}{3475} \times \frac{4250}{7353} \right) = 80.1$ $T_{L} = 66.3 \text{ kN}$ $T_{e} = T_{L} \frac{\text{We}}{\text{WL}} = 66.3 \times \frac{4250}{3475} = 81.1/\text{kN}$		
Now to do this for all other braces using accum Wind Load Total W Total N Load W Load in W Load in LVL at (CKN) Load at (CKN) Left Brace Right Brace 1	Nated Internal Forces N Load in N Load in Left Broke Right Broke	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16.3 19.9 48.9 59.8 88.1 107.7 136.5 167	
· All loads in table above are in COND and loads in tension forces. · Total Notional and Wind Loads represent an accu loads as you progress down the building.		
* Checks were done to show that factored gravity load column design with braces as opposed to tension		75
SEX: Ext. 3rd storey columns designed for D=219EN. S Here tension on if level bracks connecting to 3rd store Sthis value is even smaller when finding Ton colo	0.9D=197 EN >133E	N 4.1.3.2D

McMaster	Name: Appendix B	,		ID #: Group 19	
	Title: Bracing De		<u>6</u>	Date:	Page: 4
Lyr at (D(KN).	Total W Notional Load Load of O(KN)		Wind load in either brace	Notional Lool in either brace	NBEC 205
RF 119	119 15 318 42 439 46 560 57	15 57 103 160	116 237 327 417	14.3 42.2 76.1 117.9	
	able above are it forces if and Wind Le cols as you progr				
* Again, calculat in compressi for the for	ting 1.4W+0.90 fe and thus these ectored compressive h	or these columns	columns 3 only need	till results to be designed	TAQLE 4.1.3.21
Design Load Braces run LVL Factored	ning E-W/	Staces tur Factored	ning N-S Tension (KN)	Langer	
3 46	3.5 6.3 2.4 9.8	176.7 373.1 532.9 705.8		(ACTUAL DESIGN LOADS	
LS EX: From bra 1.4WtN=1	ees running N-S .4x116+143=176.7	at roof EN	level		TABLE 4,1.3.
1 will multiply the may occor du	vise loads by 1.4 iring connection of	due to r lesign.	et section	fracture which	
Loads used to Braces LVL 1.41×		Braces	ronning N TF CK	-5 N	
RF 187 4 3 2 890		248 523 747 882			
				1	

McMaster	Appendix B	Group	12
	Title: Bracing Design	Date:	Page:
LVL Section RF CISOXIZ 4 CISOXIZ 2 CI80×18	For Braces Running East to (KN) (KN) Ag of TF. Tr Section (mm ²) AG 134 482 1550 GO 297 482 1550 130 463 721 2320 200 G40 111 3550 288	$\frac{1}{10} \frac{1}{10} \frac$	
LVL Section Rf CIBOXIZ 4 CIBOXIS 3 C200721	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	th to South xired TF/Tr (mm^2) 0.37 34 0.65 0.66 0.64	
Note: Regid	As is based off of a local of to accomochte net section of	1.4×Tf which is hadrong	
Ex of Regid A 4 Tr = $\phi A g F f$ 1.47 T f = T F f $Ag = \frac{1}{9} F f$ = 1340 0.9	g calculation using E-W brac $F_{\gamma}=345 MPa = 0.9$ (1.4) $(4) \times 1009$ $\times 3.415$ $3 mm^2$		SIC -12 913.2
	s were chosen by referring to SIG-	14 C-channel info	516-14 pp6-6

McMaster Name: Appendix B	ID #: Group	ID #: Group 12	
Jniversity Incineering Title: Floor slab and steel deck design	Date:	Page:	
Floor slab.			
DL = 4.06 KPa $LL = 4.8 KPa$			
Critical load combination			
1.25DL + 1.5LL = 1.25(4.06) + 1.5(4.8)			
= 13(KPa)			
According to CANAM steel deck catalogue	(Canada)		
- Choose slab P-3615			
slab thick = 90 mm span = max span	of floor		
Deck thick = 1.12 mm = 1812.5 mm			
=> Resistance capacity = 15.99 kPa > 13 KPa =			
Check deflection:			
$\Delta_{max} = \frac{5wL'}{384E_c I_{comp}}$ $E_c = 2.03 \times 10^3 MPa.$			
I comp = J. DBXIU	m4.		
= 0.62 (mm) $w = 4.8 kPa.$			
$\Delta_{max} = 0.62 \text{ mm} < \frac{L}{360} = \frac{1812.5}{360} = 5.0 \text{ mm}$	⇒ okay		
Steel deck			
Roof 1:			
DL= 1.12 KPa LL= 1.0 KPa SL= 1.28 KPa			
Critical Load combination:			
1.25 DL + 1.5 SL + 1.0 LL = 1.25(1.12)+1.5(1.28)	+1.0(1.0)		
LLOUL TISOL TIN LL= LADINICITION (110)			


	Name: Appendix B		ID #: Group 12	
	Title: Floor slab and steel Design:	Deck Date	2:	Page: 3
Roof 3:				
DL=1.12 KPg.	LL=1KPa SL=5.	.48 KPg.		
Critical Load C	ombination			
1.25 DL + 1.55L	+ 1.0 LL = 10.62 (KPG).			
- Choose deck	P-2436 type 18			
Deck thick = 1	0			
Span = max	span of $roof 3 = 1875$	mm		
	upacity = 13.19 KPa >		olemy	
Check deflection			0	
$\Delta_{\max} = \frac{S W L^4}{384 EI} =$	5.0(mm) h)=3.8 KPa.		
△max = 5.0 mm	$\left< \frac{L}{360} = \frac{1875}{360} = 5.2 \text{ m}$	nm => okay.		

P-3615 & P-3606

Canam's steel deck profiles P-3615 and P-3606 are roll formed to cover 914 mm (36 in.).

The deck is available with a galvanized coating according to the standard ASTM A 653M with zinc thickness corresponding to Z275 (G90) or ZF75 (A25). Upon agreement with our sales department, it is also possible to obtain steel deck with aluminium-zinc coating according to designation AZM150 (AZ50) of the standard ASTM A 792M. Nominal thicknesses range from 0.76 mm (0.030 in.) to 1.52 mm (0.060 in.). The flutes are 38 mm (1.5 in.) deep and are spaced at 152 mm (6 in.) center to center. The deck can be rolled to lengths from 1 800 mm (6 ft.) to 12 200 mm (40 ft.).

DIMENSIONS

PHYSICAL PROPERTIES

Type	Nominal	Design	Overall	Weight	Section	Modulus	Moment of Inertia
Туре	Thickness	Thickness	Depth	weigin	M+	M-	for Deflection
	mm	mm	mm	kg/m²	mm ³	mm ³	mm ⁴
	(in.)	(in.)	(in.)	(lb/ft ²)	(in ³)	(in ³)	(in ⁴)
22	0.76 (0.030)	0.762 (0.0300)	37.4 (1.47)	8.50 (1.74)	9 529 (0.1772)	10 081 (0.1875)	202 228 (0.1481)
20	0.91 (0.036)	0.909 (0.0358)	37.5 (1.48)	10.07 (2.06)	11 558 (0.2150)	12 005 (0.2233)	254 750 (0.1865)
18	1.21 (0.048)	1.217 (0.0479)	37.8 (1.49)	13.26 (2.72)	15 813 (0.2941)	15 994 (0.2975)	363 493 (0.2662)
16	1.52 (0.060)	1.511 (0.0595)	38.1 (1.50)	16.34 (3.35)	19 786 (0.3680)	19 786 (0.3680)	452 472 (0.3313)

• Effective properties are based on a unit width of 1 000 mm (S.I. units) or 12 in. (imperial units).

• Material according to ASTM A 653M SS Grade 230, yield strength of 230 MPa (33 ksi).

• Tables are calculated according to CAN/CSA-S136-01 standard.

P-3615 & P-3606

FACTORED AND SERVICE LOADS TABLE (kPa)

Nominal SPAN (mm) Type Thickness (mm) 1 200 1 350 1 500 1 650 1 800 1 950 2 100 2 250 2 400 2 550 2 700 2 850 3 000 SINGLE SPAN 10.69 8.49 6.90 5.72 4.82 F 0.76 22 D 7.60 5.34 3.89 2.92 2.25 12.95 10.29 8.37 6.93 5.84 4.98 F 20 0.91 D 2.84 9.58 6.73 4.90 3.68 2.23 9.48 7.98 F 17.70 14.06 11.44 6.82 5.89 5.13 1.21 18 D 13.66 9.60 7.00 5.26 4.05 3.18 2.55 2.07 F 22.14 17.59 14.31 11.86 9.99 8.53 7.36 6.42 5.65 1.52 16 D 17.01 11.95 3.96 2.13 8.71 6.54 5.04 3.17 2.58DOUBLE SPAN 5.99 4.32 F 11.11 8.85 7.22 5.05 3.73 22 0.76 D 18.31 12.86 9.38 7.04 5.43 4.27 3.42 F 13.23 10.54 8.59 7.14 6.02 5.14 4.44 3.88 20 0.91 D 23.07 16.20 11.81 8.87 6.84 5.38 4.30 3.50 17.63 5.17 14.05 11.45 9.51 6.85 5.92 4 55 4 03 3 60 F 8.02 1.21 18 16.85 9.75 7.67 6.14 4.99 2.89 D 32.92 23.12 12.66 4.11 3.43 4.00 7.33 4.99 4.46 3.62 17.39 14.17 8.48 6.39 5.63 F 21.82 11.77 9.92 16 1.52 D 40.97 28.78 20.98 15.76 12.14 9.55 7.65 6.22 5.12 4.27 3.60 3.06 2.62 TRIPLE SPAN (13.60) 5.35 F 10.88 8.90 7.40 6.25 4.63 4.04 22 0.76 D 14.35 10.08 7.35 5.52 4.25 3.34 2.68 2.18 16.19 10.59 8.82 7.45 4.82 F 12.96 6.37 5.51 4.24 3.77 20 0.91 D 18.08 12.70 2.74 9.26 6.96 5.364.21 3.37 2.26 1.88 17.27 9.93 7.35 6.42 5.65 5.02 4.48 4.03 21.59 14.12 11.75 8.49 F 1.21 18 D 25.80 18.12 13.21 9.92 7.64 6.01 4.81 3.91 3.22 2.69 2.26 1.93 F 26.72 21.38 17.47 14.54 12.28 10.51 9.09 7.94 6.99 6.21 5.55 4.98 4.50 1.52 16 D 32.11 22.56 16.44 12.35 9.52 7.48 5.99 4.87 4.01 3.35 2.82 2.40 2.06

FACTORED AND SERVICE LOADS TABLE (psf)

Nominal SPAN (ft.-in.) Туре Thickness (in.) 4'-0" 4'-6" 5'-0" 5'-6" 6'-0" 6'-6' 7'-0" 7'-6" 8'-0" 8'-6" 9'-0" 9'-6" 10'-0" SINGLE SPAN 216 172 140 116 97 F 0.030 22 D 151 106 78 58 45 F 262 208 169 140 118 101 20 0.036 D 191 134 98 73 57 44 104 F 358 285 232 192 162 138 119 0.048 18 D 272 191 139 105 81 63 51 41 448 202 114 356 240 149 130 F 290 173 0.060 16 D 339 238 173 130 100 79 63 51 42 **DOUBLE SPAN** 179 146 102 F 225 121 87 76 0.030 22 D 365 256 187 140 108 85 68 F 268 214 174 144 122 104 90 78 20 0.036 D 459 323 235 177 136 107 86 70 105 F 357 285 232 193 162 139 120 92 82 73 18 0.048 D 655 460 336 252 194 153 122 99 82 68 58 287 238 101 90 81 73 442 352 201 172 148 129 114 F 16 0.060 D 816 573 418 314 242 190 152 124 102 72 61 52 85 TRIPLE SPAN 180 276 220 150 127 108 F 94 82 22 0.030 D 286 201 146 110 85 67 53 43 328 263 129 112 98 86 215 179 151 F 20 0.036 D 360 253 184 139 107 84 67 55 45 149 130 114 F 438 350 286 238 172 102 91 201 18 0.048 D 514 361 263 198 120 96 78 64 54 45 152 542 433 354 294 249 213 184 161 142 126 112 101 91 F 0.060 16 D 640 449 327 246 149 119 97 80 67 56 48 41 189

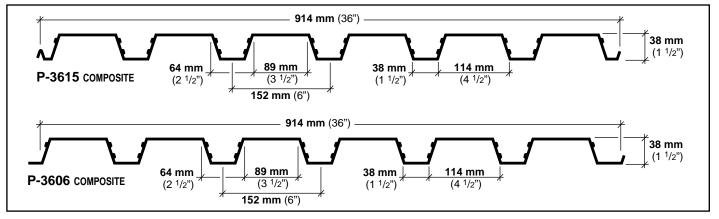
- Loads in rows marked "F" are the maximum factored loads controlled by the bending capacity, and those in rows marked "D" are the uniform service loads that produce a deflection of L/240.
- Loads in rows marked "F" should be compared to factored loads according to CAN/CSA-S16-01 Limit States Design of Steel Structure.
- The live loads producing deflection equal to the span/180 or span/360 can be calculated by multiplying the loads in the "D" rows by 1.33 or 0.66 respectively.
- Web crippling controls loads in brackets calculated with the end bearing length equal to 40 mm (1.6 in.) and the interior bearing length equal to 102 mm (4 in.). Refer to page 24 for web crippling tables and examples.

• The span is the shortest of the following dimensions: dimension c/c of the supports, or the clear dimension between the supports plus the depth of the deck at each end.

• Refer to page 34 for maximum spans approved by Factory Mutual (FM).

METRIC

MPERIAL


P-3615 & P-3606 COMPOSITE

Canam's composite P-3615 and P-3606 steel deck profiles are roll formed to cover 914 mm (36 in.).

The deck is available with a galvanized coating according to the standard ASTM A 653M with zinc thickness corresponding to Z275 (G90). Other types of steel sheet finishes may affect the bond properties between deck and concrete. Contact our sales department for more information. Nominal thicknesses are 0.76 mm (0.030 in.), 0.91 mm (0.036 in.) and 1.21 mm (0.048 in.). The flutes are 38 mm (1.5 in.) deep and are spaced at 152 mm (6 in.) center to center. The deck can be rolled to lengths from 1 800 mm (6 ft.) to 12 200 mm (40 ft.). The narrow flutes provide enough space to weld headed studs through the deck to the top of beams or joists that will act in composite action with the concrete slab. Standard steel grade conforms to ASTM A 653M SS Grade 230 with a yield

Standard steel grade conforms to ASTM A 653M SS Grade 230 with a yield strength of 230 MPa (33 ksi). Steel grades up to 350 MPa (50 ksi) and a material thickness of 1.07 mm (0.042 in.) are available given sufficient delivery time.

DIMENSIONS

PHYSICAL PROPERTIES

Туре	Nominal	Design	Overall	Weight	Section	Modulus	Moment	Steel	Center of
Type	Thickness	Thickness	Depth	weight	M+	M-	of Inertia	Area	Gravity
	mm (in.)	mm (in.)	mm (in.)	kg/m² (Ib/ft²)	mm³ (in ³)	mm ³ (in ³)	mm⁴ (in⁴)	mm² (in²)	mm (in.)
22	0.76 (0.030)	0.762 (0.0300)	37.4 (1.47)	8.50 (1.74)	9 529 (0.1772)	10 081 (0.1875)	202 228 (0.1481)	1 016 (0.480)	22.50 (0.89)
20	0.91 (0.036)	0.909 (0.0358)	37.5 (1.48)	10.07 (2.06)	11 558 (0.2150)	12 005 (0.2233)	254 750 (0.1865)	1 212 (0.573)	22.58 (0.89)
18	1.21 (0.048)	1.217 (0.0479)	37.8 (1.49)	13.26 (2.72)	15 813 (0.2941)	15 994 (0.2975)	363 493 (0.2662)	1 622 (0.766)	22.73 (0.89)

• Effective properties are based on a unit width of 1 000 mm (S.I. units) or 12 in. (imperial units).

• Material according to ASTM A 653M SS Grade 230, yield strength of 230 MPa (33 ksi).

• Tables are calculated according to CAN/CSA-S136-01 standard.

P-3615 & P-3606 COMPOSITE

FACTORED RESISTANCE TABLE OF COMPOSITE SLAB (kPa)

METRIC

Slab	Deck	Maximu	m Unshor	ed Span	Self	Comp. Mom.						S	PAN (mn	n)					
Thick.	Thick.	Single	Double	Triple	Weight	of Inertia							•	,					
(mm)	(mm)	(mm)	(mm)	(mm)	(kPa)	(10 ⁶ mm ⁴)	1 200	1 350	1 500	1 650	1 800	1 950	2 100	2 250	2 400	2 550	2 700	2 850	3 000
90																			
	0.76	1 690	1 995	1 980	1.62	3.917	20.00	20.00	20.00	20.00	18.90	15.99	13.69	11.84	10.33	9.08	8.04	7.16	6.42
	0.91	1 940	2 285	2 265	1.63	4.185	20.00	20.00	20.00	20.00	20.00	18.35	16.01	14.11	12.55	11.24	10.14	9.21	8.40
	1.21	2 405	2 735	2 790	1.66	4.690	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	19.07	17.59	16.31	15.20	13.85
100																			
	0.76	1 630	1 920	1 905	1.85	5.360	20.00	20.00	20.00	20.00	20.00	18.36	15.72	13.59	11.86	10.43	9.23	8.22	7.37
	0.91	1 865	2 195	2 170	1.86	5.721	20.00	20.00	20.00	20.00	20.00	20.00	18.38	16.20	14.41	12.91	11.65	10.57	9.65
	1.21	2 305	2 630	2 670	1.89	6.403	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	18.74	17.46	16.33
115																			
	0.76	1 550	1 820	1 805	2.20	8.134	20.00	20.00	20.00	20.00	20.00	20.00	18.76	16.22	14.15	12.45	11.02	9.82	8.79
	0.91	1 770	2 075	2 055	2.22	8.666	20.00	20.00	20.00	20.00	20.00	20.00	20.00	19.34	17.20	15.41	13.90	12.62	11.52
	1.21	2 180	2 490	2 515	2.24	9.678	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	19.51
125																			
	0.76	1 505	1 765	1 745	2.44	10.432	20.00	20.00	20.00	20.00	20.00	20.00	20.00	17.98	15.68	13.79	12.21	10.88	9.74
	0.91	1 715	2 010	1 985	2.45	11.101	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	19.06	17.08	15.41	13.98	12.76
	1.21	2 110	2 410	2 430	2.48	12.378	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00
140																			
	0.76	1 440	1 690	1 670	2.79	14.627	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	17.98	15.81	14.00	12.47	11.17
	0.91	1 640	1 920	1 895	2.81	15.535	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	19.58	17.66	16.03	14.63
	1.21	2 010	2 300	2 315	2.83	17.278	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00
150																			
	0.76	1 405	1 645	1 625	3.03	17.965	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	19.51	17.16	15.19	13.53	12.12
	0.91	1 595	1 870	1 845	3.04	19.056	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	19.17	17.40	15.88
	1.21	1 955	2 235	2 245	3.07	21.155	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00

- The table is based on concrete density of 2 400 kg/m³ and minimum compressive resistance (f_c) equal to 20 MPa at 28 days.
- During construction, the steel deck must support itself, the concrete and a construction uniform load of 1 kPa or a transverse load of 2 kN/m, as specified by the Canadian Sheet Steel Building Institute.
- The maximum unshored spans shown in the table are established for bending under the slab self-weight and the construction loads, for web crippling and for the deflection under wet concrete to be less than the span over 180 (L/180). The web crippling resistance is calculated assuming the end bearing length equal to 40 mm and the interior bearing length equal to 102 mm.

If the bearing length is shorter, the design engineer must verify the web crippling factored resistance with the reaction produced by wet concrete and construction factored loads (refer to page 24 for web crippling tables and examples).

- Contact Canam sales personnel when the total uniform load exceeds 20 kPa, as this is an indication that significant concentrated loads will be used. The composite slab and its reinforcing should be verified for the effect of concentrated loads (see notes on page 5).
- Shaded values indicate that the deck should be shored at mid-span during the pour and the curing of concrete for those spans and concrete thickness conditions. Shaded values correspond to the maximum unshored span values shown at the left of the table.
- The design engineer is responsible for specifying size and location of the wire mesh in the concrete slab in order to respect current concrete practices.

EXAMPLE

Triple span of 1 800 mm, total slab thickness of 100 mm with 62 mm of concrete cover on top of 38 mm deck profile.

Once the concrete is cured, the composite slab will have to support these loads:

Dead load	=	1.50 kPa
Service live load	=	4.80 kPa

According to the table of maximum unshored span above, we need to use a deck with a nominal thickness of 0.76 mm for a triple span condition.

Deck and concrete weights are 1.85 kPa (shown in the table).

Total factored load

 $w_f = 1.25 \times (1.85 + 1.50) + 1.5 \times 4.80 = 11.39 \text{ kPa}$

Factored resistance

 $w_{\rm r}$ = 20.00 kPa for a span of 1 800 mm, with a 100 mm slab and a 0.76 mm thick deck.

w_r > w_f OK

Service load w = 4.80 kPa

Composite moment of inertia is $5.360 \times 10^6 \text{ mm}^4$ (from the table).

Deflection =
$$\frac{5 \text{ w L}^4}{384 \text{ E}_{\text{s}} \text{ I}_{\text{comp}}} = \frac{5 \times 4.80 \times 1.800^4}{384 \times 203\ 000 \times 5\ 360\ 000}$$

= 0.6 mm < $\frac{1\ 800}{384 \times 203\ 000}$ = 5.0 mm OK

360

GENERAL NOTES

1. GENERAL

- 1.1. BEFORE PROCEEDING WITH THE WORK, VERIFY ALL DIMENSIONS WITH THE ACTUAL CONDITIONS AND REPORT DISCREPANCIES TO THE CONSULTANT.
- 1.2. PROVIDE LABOUR, MATERIALS, PLANT AND EQUIPMENT TO COMPLETE ALL STRUCTURAL WORK INDICATED ON THE CONTRACT DOCUMENTS.
- 1.3. THESE DRAWINGS SHOW THE COMPLETED STRUCTURE. THE CONTRACTOR IS RESPONSIBLE FOR SAFETY ON THE JOB SITE, AND DESIGN, INSTALLATION AND SUPERVISION OF ALL TEMPORARY BRACING, SHORING, FORM WORK AND FALSE WORK, REQUIRED TO COMPLETE THE WORK.
- 1.4. ANY DAMAGE TO EXISTING BUILDING OR TO NEIGHBORING PROPERTIES IS NOT PERMITTED. THE CONTRACTOR IS RESPONSIBLE FOR MAKING GOOD ALL UNAVOIDABLE DAMAGE.
- 1.5. THE USE OF THESE DRAWINGS SHALL BE STRICTLY LIMITED TO THE INSTRUCTIONS IN THE REVISIONS BLOCK. BUILDING FROM THESE DRAWINGS SHALL PROCEED ONLY WHEN MARKED "FOR CONSTRUCTION".
- 2. REFERENCE STANDARDS/CODES AND ACTS:
- 2.1. CONFORM WITH THE ONTARIO BUILDING CODE LATEST EDITION AND AMENDMENTS, AND ANY APPLICABLE ACTS OF ANY AUTHORITY HAVING JURISDICTION, AND THE FOLLOWING:
- 2.2. ALL MATERIALS, CONSTRUCTION AND WORKMANSHIP SHALL CONFIRM TO CSA S16-14 AND CSA G40.21.
- 2.3. DO WELDING WORK TO CSA W59-18 UNLESS SPECIFIED OTHERWISE.
- 2.4. COMPLY WITH OCCUPATIONAL HEALTH AND SAFETY ACT AND REGULATIONS.
- 2.5. WHERE THERE ARE DIFFERENCES IN REQUIREMENTS OF THE DOCUMENTS AND THE STANDARDS, CODES AND ACTS, THE MOST STRINGENT REQUIREMENTS SHALL GOVERN.

3. MATERIALS:

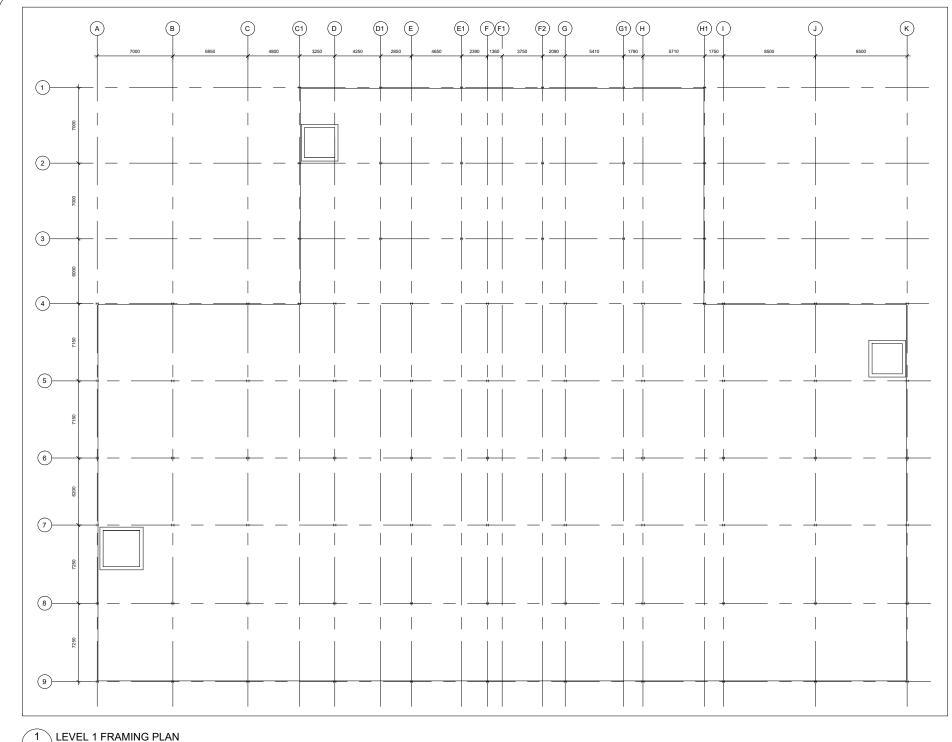
- 3.1. STRUCTURAL STEEL FOR SECONDARY BEAMS (JOISTS) AND GIRDERS TO BE ASTM GRADE A992
- 3.2. CSA G40.21 350W STEEL ANGLES TO BE USED FOR BRACING
- 3.3. COLUMNS TO BE ASTM GRADE A992 STEEL
- 3.4. BASE PLATES TO BE CAN/CSA G40.20/G40.21 GRADE 300W STEEL
- 3.5. ALL BOLTS TO BE $\frac{3}{4}$ " ASTM A325 BOLTS

4. QUALITY CONTROL:

- 4.1. IMPLEMENT A SYSTEM OF QUALITY CONTROL TO ENSURE THAT MINIMUM STANDARDS SPECIFIED HEREIN ARE ATTAINED.
- 4.2. BRING TO ATTENTION OF ENGINEER ANY DEFECTS IN THE WORK OR DEPARTURES FROM CONTRACT DOCUMENTS, WHICH MAY OCCUR DURING CONSTRUCTION. ENGINEER WILL DECIDE UPON CORRECTIVE ACTION AND GIVE RECOMMENDATIONS IN WRITING.
- 4.3. ENGINEER'S GENERAL REVIEW DURING CONSTRUCTION AND INSPECTION AND TESTING BY INDEPENDENT INSPECTION AND TESTING AGENCIES REPORTING TO ENGINEER ARE BOTH UNDERTAKEN TO INFORM THE OWNER/CLIENT OF CONTRACTOR'S PERFORMANCE AND SHALL IN NO WAY RELIEVE CONTRACTOR OF CONTRACTUAL RESPONSIBILITIES.

DRAWING LIST

S1 - GENERAL NOTES S2 - LEVEL 1 FRAMING PLAN S3 - LEVEL 2 FRAMING PLAN S4 - LEVEL 3 FRAMING PLAN S5 - LEVEL 4 FRAMING PLAN S6 - ROOF FRAMING PLAN S7 - EAST AND WEST ELEVATION S8 - NOTH AND SOUTH ELEVATION S9 - JOIST AND GIRDER SCHEDULE S10 - COLUMN SCHEDULE


AUTODESK STUDENT VERSION

AN

RODUCED BY

Δ

CONTRACTOR MUST CHECK AND VERIFY ALL DIMENSIONS AND JOB SITE CONDITIONS AND REPORT ANY DISCREPANCIES TO THE ENGINEER PRIOR TO COMMENCING CONSTRUCTION ALL DRAWINGS AND SPECIFICATIONS AND RELATED DOCUMENTS ARE THE COPYRIGHT PROPERTY OF THE ENGINEER AND MUST BE RETURNED ON REQUEST REVIEW 1 20/01/20 No. DATE DESCRIPTION STAMP NORTH **RODUCED BY AN AUTODESK** areentech **KEVIN LUONG** DAVID MOORE REGAN O'HENLY OLIVIA PARSONS DESMOND YEUNG DAN ZHAO STUDENT VE LOCATION STONEY CREEK. ON PROJECT RSION FRUITLAND VERTICAL FARM AND MARKETPLACE DRAWING TITLE GENERAL NOTES PROJECT No: DRAWING No 001 DATE: 20 JANUARY 2019 SCALE: ____ DRAWING BY: KL & DM APPROVED BY: KL & DM

 $\left(\begin{array}{c} 1 \\ S2 \end{array} \right) 1:350$

GROUND FLOOR FRAMING PLAN

NOTES:

- 1. GROUND FLOOR DATUM ELEVATION (0.00).
- 2. DO NOT SCALE THE DRAWING.
- 3. UNLESS OTHERWISE SPECIFIED, ALL DIMENSIONS SHALL BE IN MILLIMETER.
- 4. ALL COLUMNS MUST BE RIGIDLY CONNECTED TO FOOTINGS.
- 5. REFER TO DRAWING S1 FOR GENERAL NOTES.

- 6. REFER TO DRAWING S2-S6 FOR TYPICAL DETAILS.
- 7. REFER TO DRAWING S7-S8 FOR ELEVATION VIEW.
- 9. REFER TO DRAWING S9 FOR JOIST AND GIRDER SCHEDULE.
- 10. REFER TO DRAWING S10 FOR COLUMN SCHEDULE.

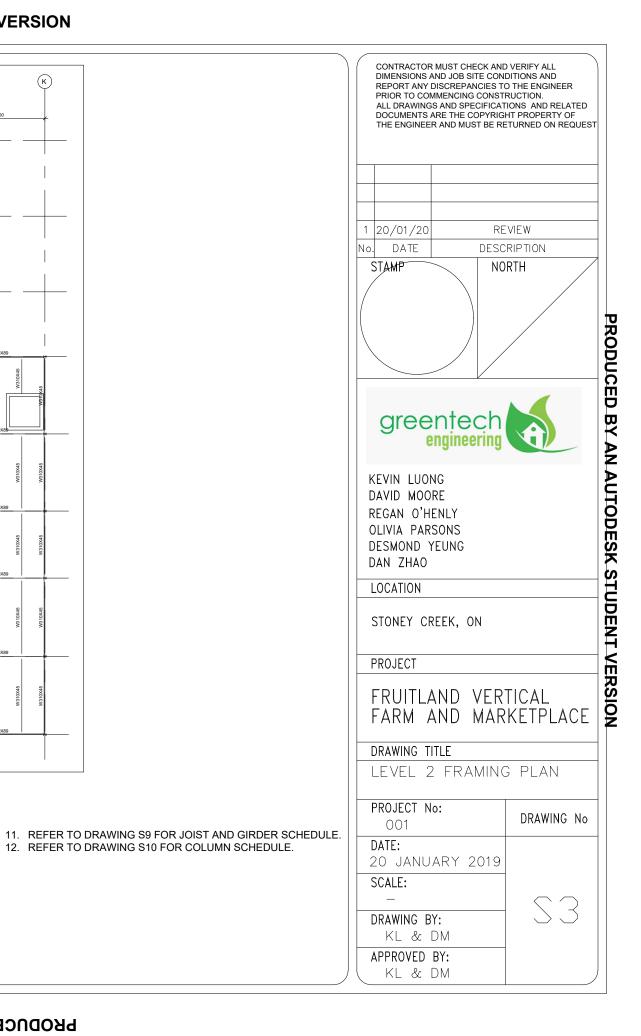
PRODUCED BY AN AUTODESK STUDENT VERSION

		A			(В				C		0	:1))	(21)	E)		(E1		F)(F'	1)	F	2) (3		G	1) (H)		H)			(.	J				К
(1)+	۰			7000		+		6950			4800		325	1	42	50	28	350	M530X92	4650	-+	2390	1360 W530	, 37 1X92	50	2090	W530	5410 X92	*	1790	W530	5710 X92		, 1750		850					8500		*
												200X71	W200X71		200X71	12A006		W200X71	W200X71	W200X71	W200X71	W200X71	W200X71	W200X71	200X71	W200X71	W200X71	W200X71	W200X71	W200X71	N200X71	200X71	200X71										
2	.	_ _				_				_				M W530	≥)X92				≥ ₩530X92		>		> W530		>		≥ ₩530		×	>	≥ ₩530	> X92	>										
7000												W200X71	W200X71	W200X71	W200X71	*2A00CIV		W200X71	W200X71	W200X71	W200X71	W200X71	W200X71	W200X71	W200X71	W200X71	W200X71	W200X71	W200X71	W200X71	W200X71	W200X71	W200X71										
3-		- -	_			\downarrow				_				W53	1X92	<u> </u>			W530X92	2	— H		W530	1X92			W530	×92			W530	x92		+									
6000												W200X71	W200X71	W200X71	W200X71			W200X71	W200X71	W200X71	W200X71	W200X71	W200X71	W20		W200X71	W200X71	W200X71	W200X71	W200X71	W200X71		W200X71										
4	-	X45		460X89	X45	745		460X89)X45)X45	\$450X8		9460))X45	1 W460X)X45	X45	0X45	0X89	X45			60X89	245	X45	946b		X45		\$2		460X89 54X01	X45	W460.)X45			460X89	W310X45	k45
5		W310X45		460X89	W310X45			460X89	W310X45	W310X45		\$400X8		#310X45	W310X45	01EX W460X	% W310X45	W310X45	W310X45		0X89	W310X45			60X89	W310X45	W310X45	99X018M W460	68X W310X45	W310X45	W310X45	\$10X460	68) W310X45		W310X45	M310X45	68Xi W310X45	W310X45			460X89		- mart
7150		W310X45	07310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	WR10X45	W310X45	W 10X45	CHANDLOW	2001001	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45		W310X45	W310X45	W310X45	W310X45
6		_	w	460X89				V460X89		_		W460X8		 		W460×	!		·		0X89				60X89	 		W460				W460>				W460	1X89	(/460X89	<u> </u>	-
6200		W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	SPACE	W210X45	MI240V4E	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45		W310X45	W310X45	W310X45	W310X45
7	-		w	460×89	 	 	v	V460X89		 		W460X8		 		W460×			·		0X89	<u> </u> 		W4	60×89	 	 	W460	×89	#		W460>	(89			W460	1X89	i	 	w	/460X89		-
7250		W3 10X45	0210745	V310X45	W310X45	W3 10X45	W3 10X45	W3 10X45	W3 10X45	W3 10X45	W3 10X45	W3 10X45	W3 10X45	W3 10X45	W3 10X45	W3 10X45	W3 10X45	W3 10X45	W3 10X45	W310X45	W3 10X45	W3 10X45	310000 500	CPACIT CWV	at you give	W3 10X45	W3 10X45	W3 10X45	W3 10X45	W3 10X45	W3 10X45	W3 10X45	W3 10X45	W3 10X45	W3 10X45	W3 10X45	W3 10X45	W3 10X45		W3 10X45	W3 10X45	W3 10X45	W3 10X45
8			<u> </u>	< 460X89	 		v	V460X89			<u> </u>	W460X8			 	W460X			•——		0X89	<u> </u> 		W4	60×89	 		W460	X89			W460>	(89			W460	1X89			w	/460X89	<u> </u> 	╞
7250		W310X45	VV31UX45	W310X45	W310X45	VV310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	<u>W310</u> X45	W310X45	M910X4F	W310A45	W040V4E	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45		W310X45	W310X45	W310X45	W310X45							
9	L	_	w	46 0 X89		-	v	V460X89		+		W460X8		_		W460X	89			W46	0X89			W4	60X89			W460	X89			W460>	(89			W460	1X89	,	-	, w	/460X89		_

1 LEVEL 2 FRAMING PLAN

S3 1:350

SECOND FLOOR FRAMING PLAN


NOTES:

- 1. SECOND FLOOR DATUM ELEVATION +4000.00 mm RELATIVE TO THE GROUND FLOOR, EXCEPT OTHERWISE STATED.
- 2. DO NOT SCALE THE DRAWING.
- 3. UNLESS OTHERWISE SPECIFIED, ALL DIMENSIONS SHALL BE IN MILLIMETER.
- 4. SUPERIMPOSED LOADS USED IN DESIGN: DEAD LOAD: 1.72 kPa

- LIVE LOAD: 4.8 kPa
- 5. SELF WEIGHT OF STRUCTURE USED IN DESIGN: DECK & SLAB: 1.84 kPa
- FRAMING: 0.5 kPa 6. THICKNESS OF STEEL DECK AND CONCRETE SLAB:
- STEEL DECK: 1.12 mm
 - CONCRETE SLAB: 90 mm
- 7. MAINTAIN THE SLAB THICKNESS, EXCEPT OTHERWISE STATED.
- 8. REFER TO DRAWING S1 FOR GENERAL NOTES.
- 9. REFER TO DRAWING S2-S6 FOR TYPICAL DETAILS.
- 10. REFER TO DRAWING S7-S8 FOR ELEVATION VIEW.

PRODUCED BY AN AUTODESK STUDENT VERSION

РКОРИСЕР ВҮ АМ АИТОРЕЗК ЗТИРЕИТ УЕРЗІОИ

	2	,	700	D			695	0		41	00	-	3250	-	4250	-	2850	r	4650	\rightarrow	2390	1360	3750	-+	2090		5410	-+	1790		5710		1750		85	00				8500		
1	+		_						-			+	×	410X85				W410X8	5			W410X	85			W410X	85			W410	K85		+			_		-		_		
7000												M360X39	W200	watthe	W360X39	W360X39	W360X39	W360X39	W360X39	W360X39	W360X39	W360X39	W360X39	W360X39	W360X39	W360X39	W360X39	W360X39	W360X39	W360X39	W360X39	W360X39										
2	-		_											a 10×85		_ •		W410X8	5			W410X	85			W410X	.85			W410	K85	+	-			_		-	—	_		
7000												W360X39	W360X39	W350X 39	W360X39	W360X39	W360X39	W360X39	W360X39	W360X39	W360X39	W360X39	W360X39	W360X39	W360X39	W360X39	W360X39	W360X39	W360X39	W360X39	W360X39	W360X39										
3	-		_				_		+					410X85		_ +		W410X8		H -		W410X		H -		W410X				W410			-			_				_	_	
(4)			W4603	(89			W4603	(89		W46			60X89	W360X3	6EX09EM W46		W360X39	W360X39	6EX09EM	60X89	W360X39	W360X39	6EX09EM W460	6EX09EM	W360X39	W360X39	6EX09EM W460X	89 M360X39	W360X39	W360X39	6EX09EM	€EX096M	V460X89		W460	0X89			w	/460X89		
4 992 120	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45		W310X45	W310X45	W310X45	W310X45	W310X45		W310X45		W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	ANA LOUGH	W310X45	W310X45	WR TOK 45
5	45 +	122	W4602		45	45	W460)		45	45	W460						45			60×89				×89	Ĩ	45	W460X		45	45	W460X		45 1	45 	W460					460X89	45	₄₆
(6)	W310X	W310X45	W310X45	68 W310X45	W310X45	W310X45	\$9400 W310X45	68 W310X45	W310X45	W310X45	W310X45	w310X45	W310X45	W310X45	946 W46		W310X45	W310X45	EW EW	68X09 W310X45	W310X45		W310X45 W310X45	×89	W310X45	W310X	\$PX10X45	86 W310X45	W310X45	W310X45	W310X45	8 W310X45	W310X45	W310X45	W310X45		W310X	W310X45		X01EX /460X89	W310X45	W310X
000	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	11 of 150 of 10	W310X45	W310X45	W310X45
7			W4603	(89) 	! 		W4603	(89	 		W460	×89		 		0X89		 		60×89			W460	_{×89} 			W460X	89			W460X	89			W460	1000		 	<u> </u>	/460X89	<u> </u>	
7250	W310X45	W310X45	095M 00000000000000000000000000000000000	w310X45	W310X45	W310X45	W310X45	88 W310X45	W310X45	W310X45	940W	w310X45	M310X45	W310X45	94W		W310X45	W310X45		60X89	W310X45	W310X45	\$400 W460		W310X45	W310X45	\$10X45 W460X	88 W310X45	W310X45	W310X45	94200X45	8 W310X45	W310X45	W310X45	9400 W460		W310X45			460X89	W310X45	W310X45
1250	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45		W310X45	W310X45	W310X45	W310X45		W310X45	W310X45			W310X45	W310X45			W310X45	W310X45		W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45			W310X45	W310X45			W310X45	W310X45
(9)			W4602	(89			W460)	(89			W460	×89			W46	0X89		 	W4	6 0 X89			W460	x89			W460X	89			W460X	89			W460	0X89			w	/46 0 X89		

1 LEVEL 3 FRAMING PLAN

<u>S4/1:3</u>50

THIRD FLOOR AND ROOF (MARKET PLACE) FRAMING PLAN

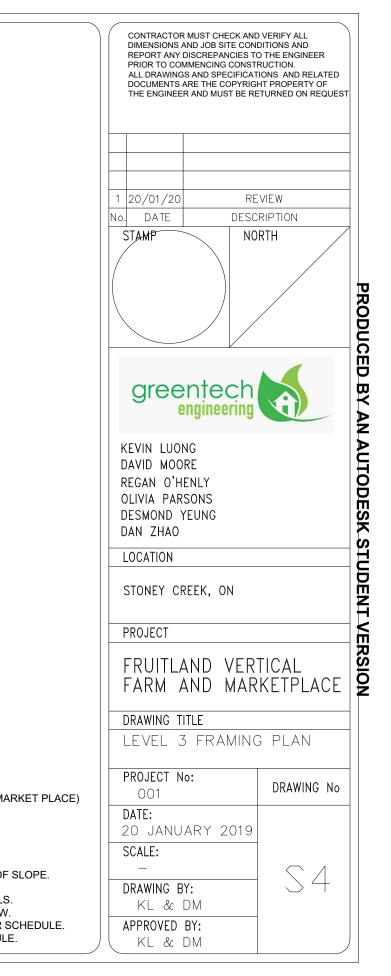
NOTES:

- 1. THIRD FLOOR AND MARKET PLACE'S ROOF DATUM ELEVATION +8000.00 mm RELATIVE TO THE GROUND FLOOR, EXCEPT OTHERWISE STATED.
- 2. DO NOT SCALE THE DRAWING.
- 3. UNLESS OTHERWISE SPECIFIED, ALL DIMENSIONS SHALL BE IN MILLIMETER.
- 4. SUPERIMPOSED LOADS USED IN MAIN BUILDING DESIGN: DEAD LOAD: 1.72 kPa

LIVE LOAD: 4.8 kPa

- SELF WEIGHT OF STRUCTURE USED IN MAIN BUILDING DESIGN: 5. DECK & SLAB: 1.84 kPa
 - FRAMING: 0.5 kPa
- 6. THICKNESS OF STEEL DECK AND CONCRETE SLAB (MAIN BUILDING): STEEL DECK: 1.12 mm

CONCRETE SLAB: 90 mm


- 7. MAINTAIN THE SLAB THICKNESS, EXCEPT OTHERWISE STATED.
- 8. SUPERIMPOSED LOADS USED IN ROOF (MARKET PLACE) DESIGN: DEAD LOAD:
 - 0.32 kPa 1.0 kPa
 - LIVE LOAD: SNOW & RAIN LOAD: 5.48 kPa

9. SELF WEIGHT OF STRUCTURE USED IN ROOF (MARKET PLACE) DESIGN:

JESIGN.	
DECK	0.3 kPa
FRAMING:	0.5 kPa

- 10. THICKNESS OF STEEL DECK (MARKET PLACE): STEEL DECK: 1.12 mm
- 11. REFER TO ARCHITECTURAL DRAWING FOR ROOF SLOPE.
- 12. REFER TO DRAWING S1 FOR GENERAL NOTES.
- 13. REFER TO DRAWING S2-S6 FOR TYPICAL DETAILS.
- 14. REFER TO DRAWING S7-S8 FOR ELEVATION VIEW.
- 15. REFER TO DRAWING S9 FOR JOIST AND GIRDER SCHEDULE.
- 16. REFER TO DRAWING S10 FOR COLUMN SCHEDULE.

PRODUCED BY AN AUTODESK STUDENT VERSION

		+		7000				6950			48		3250	Ì		7100		E		7040		F)	7	200			720	D			5710		1750		85	1500		\downarrow		8500)	
4)—		— 		W460X	89		_	W460X8	19	;		×89 ++	W460X	89		W460X8	9	 	_	W460X89		 		60X89	 			(89	 	v	V460X89		W460X89		W46	60X89		 		W460X		
	7150	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45		W310X45			W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45		W310X45	W310X45			W310X45	W310X45	W310X45	W310X45	W310X45	_
5)—				W460X	89			W460X8	19			W460X89				W460X8	9			W460X89		-		60X89			W460	(89)			W460	X89			W46	60X89				W460X	e	_
	7150	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45		W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	arvo.	W310X45	W310X45	W310X45	W310X45	W310X45	
6)-	-+			W460X	89			W460X8	1 01			W460X89	<u> </u>			W460X8	9			W460X89				6 0 X89			W460	(89			W460	X89			W46	60X89	<u> </u>			W460X	.89	
	6200	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	WollOA45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45		W310X45	W310X45	W310X45	W310X45	W310X45	
7)-	+			W460X	89			W460X8	19		<u> </u>	W460X89				W460X8	9		<u> </u>	W460X89	-	-		60X89			W460	(89			W460	X89			W46	60×89	<u> </u>			W460X	89	
	7250	W310X45	W310X45	W310X45	8 L W310X45	W310X45	W310X45	V310X45	5 W310X45	W310X45	W310X45	45000000000000000000000000000000000000	W310X45	W310X45	W310X45	W310X45 W310X45	o W310X45	W310X45	W310X45	9400X89		W310X45		W310X45	W310X45	W310X45	9400X46	8 W310X45	W310X45	W310X45	W310X45		W310X45	W310X45		60X89	W310X45	W310X45	W310X45	9480X	8 W310X45	
8)—							İ	VI40DAL		-			İ		Ì			-	İ	114062.85		1								İ	11406						1		<u> </u>			
	7250	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	W310X45	at vote of the	W310X45	W310X45	W310X45	W310X45	W310X45	
9)—	_			W460X	89			W460X8	19			W460X89				W460X8	9	_		W460X89		-	W4	6 0 X89			W460)	(89			W460	X89			W46	60X89	<u> </u>			W460X	.89	

1 LEVEL 4 FRAMING PLAN

S5 1:350

AN AUTODESK STUDENT VERSION

RODUCED BY

ם

FOUR FLOOR FRAMING PLAN

NOTES:

- 1. FOUR FLOOR DATUM ELEVATION +12000.00 mm RELATIVE TO THE GROUND FLOOR, EXCEPT OTHERWISE STATED.
- 2. DO NOT SCALE THE DRAWING.
- 3. UNLESS OTHERWISE SPECIFIED, ALL DIMENSIONS SHALL BE IN MILLIMETER.
- 4. SUPERIMPOSED LOADS USED IN DESIGN:

DEAD LOAD:	1.72 kPa
LIVE LOAD:	4.8 kPa

- 5. SELF WEIGHT OF STRUCTURE USED IN DESIGN: DECK & SLAB: 1.84 kPa
 - FRAMING: 0.5 kPa
- 6. THICKNESS OF STEEL DECK AND CONCRETE SLAB: STEEL DECK: 1.12 mm CONCRETE SLAB: 90 mm
- 7. MAINTAIN THE SLAB THICKNESS, EXCEPT OTHERWISE STATED.
- 8. REFER TO DRAWING S1 FOR GENERAL NOTES.
- 9. REFER TO DRAWING S2-S6 FOR TYPICAL DETAILS.
- 10. REFER TO DRAWING S7-S8 FOR ELEVATION VIEW.
- 11. REFER TO DRAWING S9 FOR JOIST AND GIRDER SCHEDULE.
- 12. REFER TO DRAWING S10 FOR COLUMN SCHEDULE.

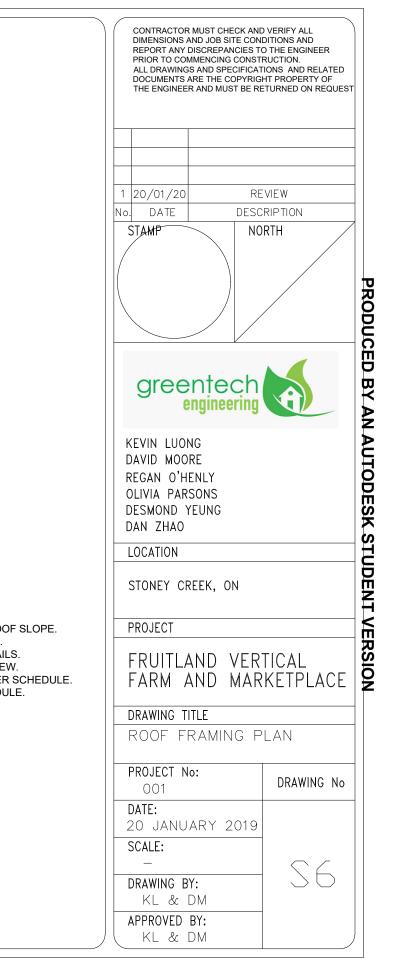
		A)	7000		В)	695	50	(4800		3	250		7	100		E		7040		F		7200		G		7200)	(H)	5710		H1			85	00		0)	85	600		(K
4-	-	;- ;-		W360X5	1	 		W360	X51		 '	W360X5	51	 	0X51	•	W36	60X51				V360X51		 		W360X5	<u> </u>	 - 		W360X	51	!		W360X5	<u>i1</u>	W360	(51		W530	0X92		 		W530	0X92		
	7150	W200X31	W200X31	W200X31	W200X31	W200X31	W200X31	W200X31	W200X31	W200X31		W200X31	W200X31	W200X31	W200X31	W200X31	W200X31	*CV00CIM	MZUUZN	W200X31	W200X31	W200X31	W200X31	W200X31	W200X31	W200X31	W200X31	W200X31	W200X31	W200X31	W200X31	W200X31	W200X31	W200X31		W200X31	W200X31 W360X39	W360X39	W360X39		W 360X39	W360X39	W360X39	W360X39	DEXCOREM	8CV/0CM	W360X39
5—	-+			W360X5	1			W360	X51			 	W360X5			•	W36	50X51	 	-	<u> </u>	V360X51		-	<u> </u>	W360X5	<u> </u>	-		W360×	51			W3	60X51	<u> </u> 			W53	0X92	 			W53	0X92	 	
\sim	7150	W200X31	W200X31	W360X3	v200X31	W200X31	W200X31	W200X31	W200X31	W200X31		W200X31	W360X5	W200X31	W200X31	W200X31		50X51	100000	W200X31		V360X51	W200X31	W200X31	W200X31	w360X31	W200X31	W200X31	W200X31	M300X31	W200X31	W200X31	W200X31		60X51	W200X31	W200X31 W360X39	W360X39	6EX09EM W53		W360X39	W360X39	W360X39	6EX09EM W53	Dec XOSE	80V000A	W360X39
6)	+			W36UX5		_			1,451				W360X5		•	•				-			İ			VV360X5		-		W360X	.51			Wa	60,51				W53	1892		-+-		W53	0,592		
\bigcirc	6200	W200X31	W200X31	W360X31	L W200X31	W200X31	W200X31	W200X31	V200X31	W200X31		W200X31	15X00XX	W200X31	W200X31	W200X31		50X51	W200A31	W200X31		V360X51	W200X31	W200X31	W200X31	M300X3	W200X31	W200X31	W200X31	M390X31	V200X31	W200X31	W200X31		60X51	W200X31	W200X31 W360X39	W360X39	65X09EM		W360X39	W360X39	W360X39	6EX09EM W53		80V000A	W360X39
(7)—						-										•——				- •				-				1									- ++										_
	7250	W200X31	W200X31	W200X31	W200X31	W200X31	W200X31	W200X31	W200X31	W200X31		W200X31	W200X31	W200X31	W200X31	W200X31	W200X31	* CAUGUN	I CY NO ZA	W200X31	W200X31	W200X31	W200X31	W200X31	W200X31	W200X31	W200X31	W200X31	W200X31	W200X31	W200X31	W200X31	W200X31	W200X31		W200X31	W200X31 W360X39	W360X39	W360X39		W360X39	W360X39	W360X39	W360X39	DEXUSEM	8 CYNDCM	W360X39
8—	_			W360X5	1	_		W360	X51			<u> </u>	W360X5				W36	60X51	 		<u> </u>	V360X51				W360X5		_		W360×	51	,		W3	60X51				W53	0X92		_		W53	0X92		
<u> </u>		31	31	31	31	31	31	31	31	31		31	31	31	31	31	31		2	(31	31	31	31	31	X31	31	31	(31	31	31	31	31	31	34		5		(39	39	1	60	39	39	39	or.	69	39
	7250	W200X31	W200X31	W200X31	W200X31	W200X31	W200X31	W200X31	W200X31	W200X31		W200X	W200X31	W200X31	W200X31	W200X31	W200X31	* CAUGOIN	/007AA	W200X31	W200X31	W200X31	W200X31	W200X31	W200X	W200X31	W200X31	W200X31	W200X31	W200X31	W200X31	W200X	W200X31	W200X31		W200X31	W200X31 W360X39	W360X	W360X39		W360X	W360X39	W360X39	W360X	DEXUSEM	//DCAA	W360X
9—	_			W360X5	1	-+		W360	X51				W360X5		,		W36	50X51		_		V360X51				W360X5				W360×	51	,		W3	60X51	-			W53	0X92				W530	0X92		

1 ROOF FRAMING PLAN

S6 1:350

RODUCED BY AN AUTODESK STUDENT VERSION

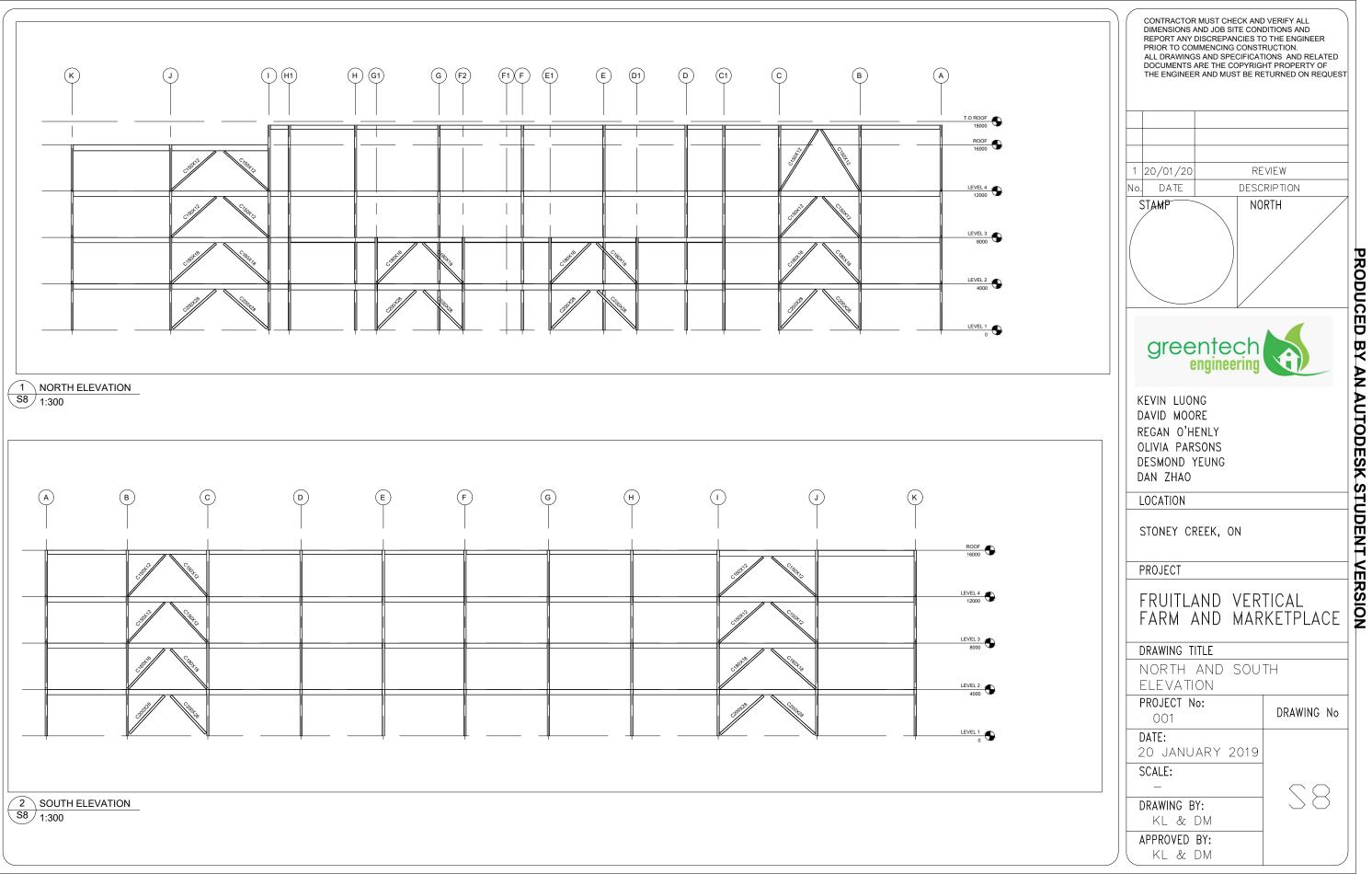
ם


ROOF (MAIN BUILDING) FRAMING PLAN

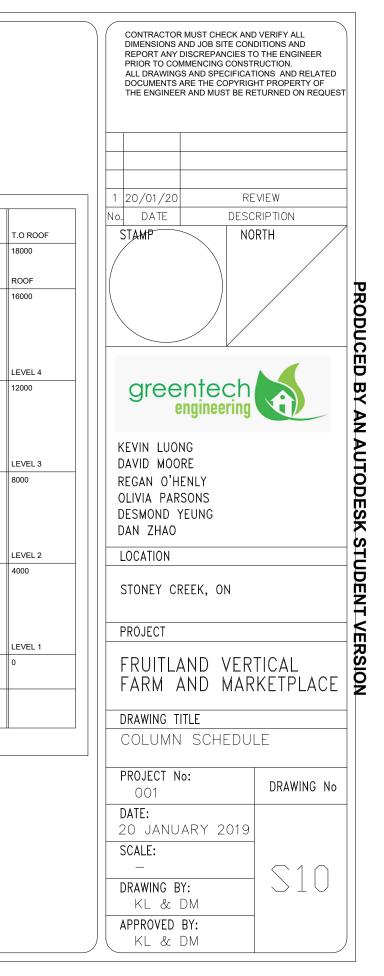

NOTES:

- 1. MAIN BUILDING'S ROOF DATUM ELEVATION +16000.00 mm RELATIVE TO 6. THICKNESS OF STEEL DECK OF CURVED ROOF: THE GROUND FLOOR, EXCEPT OTHERWISE STATED.
- 2. DO NOT SCALE THE DRAWING.
- 3. UNLESS OTHERWISE SPECIFIED, ALL DIMENSIONS SHALL BE IN MILLIMETER.
- 4. SUPERIMPOSED LOADS USED IN CURVED ROOF DESIGN: DEAD LOAD: 0.32 kPa LIVE LOAD: 1.0 kPa

- SNOW & RAIN LOAD: 1.28 kPa
- 5. SELF WEIGHT OF STRUCTURE USED IN CURVED ROOF DESIGN: DECK 0.3 kPa FRAMING: 0.5 kPa
- STEEL DECK: 0.76 mm 7. SUPERIMPOSED LOADS USED IN FLAT ROOF DESIGN: DEAD LOAD: 0.32 kPa
 - 1.0 kPa
 - LIVE LOAD: 5.48 kPa
- SNOW & RAIN LOAD: SELF WEIGHT OF STRUCTURE USED IN FLAT ROOF DESIGN: 8. 0.3 kPa DECK


- FRAMING: 0.5 kPa
- 9 THICKNESS OF STEEL DECK OF FLAT ROOF: STEEL DECK: 1.21 mm
- 10. REFER TO ARCHITECTURAL DRAWING FOR ROOF SLOPE.
- 11. REFER TO DRAWING S1 FOR GENERAL NOTES.
- 12. REFER TO DRAWING S2-S6 FOR TYPICAL DETAILS.
- 13. REFER TO DRAWING S7-S8 FOR ELEVATION VIEW.
- 14. REFER TO DRAWING S9 FOR JOIST AND GIRDER SCHEDULE.
- 15. REFER TO DRAWING S10 FOR COLUMN SCHEDULE.

ИОІЄЯЭУ ТИЭОЛТЄ ХЕЗООТИА ИА ҮВ ОЭОИОЯЯ



		JOIS	T SCHEDULE	Ξ				
REGION	SECTION	LOAD TYPE	M _f (kNm)	M _r (kNm)	V _f (kN)	V _r (kN)	Δ _{max} (mm)	Δ _{limit} (mm)
FLOOR (MARKET PLACE)	W200x71	GRAVITY	141	249	81	542	13.8	19.4
FLOOR (MAIN BUILDING)	W310x45	GRAVITY	172	219	95	423	18.5	20.1
	W200x31	GRAVITY	58	104	32	275	13.3	20.1
CURVED ROOF (MAIN BUILDING)	VV200X31	UPLIFT	17	38	10	275	-	-
	M00000	GRAVITY	149	205	82	470	18.4	20.1
FLAT ROOF (MAIN BUILDING)	W360x39	UPLIFT	10	45	6	470	-	-
	11/200 00	GRAVITY	123	205	70	170	14.0	19.4
ROOF (MARKET PLACE)	W360x39	UPLIFT	16	49	9	170	-	-

		GIRDE	R SCHEDUL	.E				
REGION	SECTION	LOAD TYPE	M _f (kNm)	M _r (kNm)	V _f (kN)	V _r (kN)	Δ _{max} (mm)	Δ _{limit} (mm)
FLOOR (MARKET PLACE)	W460x89	GRAVITY	608	624	243	996	8.6	20.8
FLOOR (MAIN BUILDING)	W530x92	GRAVITY	663	732	234	1114	20.4	23.6
	W360x51	GRAVITY	258	277	96	523	15.4	22.4
CURVED ROOF (MAIN BUILDING)	W300X31	UPLIFT	27	90	10	523	-	-
FLAT ROOF (MAIN BUILDING)	W530x92	GRAVITY	697	732	246	1114	20.9	23.6
FLAT ROOF (MAIN BUILDING)	W000X92	UPLIFT	30	262	11	1114	-	-
	W410x81	GRAVITY	525	534	210	931	20.5	20.8
ROOF (MARKET PLACE)	VV41UX81	UPLIFT	23	251	9	931	-	-

T.O ROOF															
18000	П											Π			
ROOF			П	П					П						
16000	W200X42	W200X42	W200X42	W200X42	W200X42	W200X42	W200X42	W200X42	W200X42	W200X42		W200X42		W200X42	W200X42
LEVEL 4															
12000	W200X42	W200X42	W200X42	W200X42	W200X42	W200X42	W200X52	W200X52	W200X52	W200X52		W200X52		W200X42	W200X52
LEVEL 3											 				
8000	W200X52	W200X52	W200X52	W200X52	W200X52	W200X52	W200X71	W200X71	W200X71	W200X71	W200X42	W200X71	W200X42	W200X52	W200X71
4000															
	W200X52	W200X52	W200X52	W200X52	W200X52	W200X52	W200X86	W200X86	W200X86	W200X86	W200X42	W200X86	W200X52	W200X52	W200X86
LEVEL 1															
0															
Column Locations	A-4, B-4, C-4, I-4	A-5	A-6	A-7	A-8	A-9, B-9, C-9, D-9 E-9, F-9, G-9, H-9 I-9	⁷ B-5, C-5, D-5, E-5 F-5, G-5, H-5, I-5	, B-6, C-6, D-6, E F-6, G-6, H-6,	E-6, B-7, C-7, D-7, E-7 F-7, G-7, H-7, I-7	7, B-8, C-8, D-8, E-8 F-8, G-8, H-8, I-8	C1-1, C1-3, D1-1, E1-1, F2-1, G1-1, H1-1, H1-2, H1-3, C1-2	C1-4, D-4, E-4, F-4 G-4, H-4, H1-4	D1-2, D1-3, E1-2, E1-3, F2-2, F2-3, G1-2, G1-3	J-4, J-9, K-4, K-5, K-6, K-7, K-8, K-9	J-5, J-6, J-7, .

